检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷大江[1] 杜萌 李智星 吴渝[3] LEI Dajiang;DU Meng;LI Zhixing;WU Yu(College of Computer, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China;College of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China;Institute of Web Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China)
机构地区:[1]重庆邮电大学计算机科学与技术学院,重庆400065 [2]重庆邮电大学软件工程学院,重庆400065 [3]重庆邮电大学网络智能研究所,重庆400065
出 处:《重庆邮电大学学报(自然科学版)》2019年第3期354-366,共13页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:重庆市留学归国人员创新创业项目(cx2018120);国家社会科学基金(17XFX013);重庆市基础研究与前沿探索项目(cstc2015jcyjA40018)~~
摘 要:稀疏多元逻辑回归(sparse multinomial logistic regression,SMLR)因为具有在分类的同时嵌入特征选择的作用而被广泛应用于生物信息学、高光谱图像分类、图像中的多类物体识别等领域。SMLR问题最早采用迭代重加权最小二乘法(iterative reweighted least squares,IRLS)的方式进行求解。但IRLS算法在处理高维数据集或者类别数较多的数据集时具有较高的计算复杂度。为了提高SMLR的可用性,提出采用一些高级优化算法如快速迭代收缩阈值法(fast iterative shrinkage threshold method,FISTA)、快速自适应收缩阈值法(fast adaptive shrinkage threshold method,FASTA)、交替方向乘子法(alternating direction multiplier method,ADMM)等来对SMLR问题进行求解。此外,为提高SMLR的适用性,还考虑了SMLR问题的分布式优化求解。对提出的几种SMLR优化求解算法的性能在不同数据集下进行了综合比较。实验结果表明,提出的算法在求解速度和准确率指标上都优于目前最先进的基于IRLS的SMLR优化算法。Sparse multinomial logistic regression( SMLR) is widely used in disease diagnosis,multi-class object recognition,and hyperspectral image classification,etc. The SMLR problem was first solved by iterative reweighted least squares method( IRLS),but the IRLS algorithm has higher computational complexity when dealing with high dimensional datasets or datasets with a large number of classes. In order to promote high availability,we adopted a few advanced optimization algorithms,such as fast iterative shrinkage threshold method( FISTA),fast adaptive shrinkage threshold method( FASTA),alternating direction multiplier method( ADMM),to solve the SMLR problem. In addition,in order to improve the applicability of SMLR,the distributed optimization of SMLR problem is also considered. Finally,the performance of our proposed SMLR optimization algorithm is comprehensively compared among different datasets. The experimental results show that in terms of solving speed and precision rate,our proposed algorithm outperforms the state-of-the-art SMLR algorithm based on IRLS.
关 键 词:稀疏优化 交替方向乘子法 分布式并行化 稀疏多元逻辑回归
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3