奇异值分解结合均匀设计采样的半不变量法概率潮流计算  被引量:17

Probabilistic load flow calculation based on cumulant method combining singular value decomposition and uniform design sampling

在线阅读下载全文

作  者:毛晓明[1] 叶嘉俊[1] MAO Xiaoming;YE Jiajun(School of Automation,Guangdong University of Technology,Guangzhou 510006,China)

机构地区:[1]广东工业大学自动化学院

出  处:《电力自动化设备》2019年第6期159-165,172,共8页Electric Power Automation Equipment

基  金:广东省自然科学基金资助项目(2014A030313509)~~

摘  要:在样本形成过程中半不变量法概率潮流(PLF-CM)计算可能遇到输入变量相关系数矩阵非正定的情况,此时常用的Cholesky分解不再适用。提出一种奇异值分解(SVD)结合均匀设计采样(UDS)的PLF-CM计算方法。通过SVD和UDS结合Nataf变换得到考虑相关性的随机变量样本,借助这些样本计算常规数值方法难以求解的部分输入变量的半不变量,利用SVD处理输入变量的协方差矩阵以准确计算输出变量的半不变量,采用Cornish-Fisher级数展开求得输出变量的概率分布。以改造后的IEEE 14节点测试系统为算例,验证了所提方法的快速性、有效性及对高渗透率新能源发电的适应性。In the process of sample formation,the PLF-CM(Probabilistic Load Flow based on Cumulant Method) calculation may encounter the condition that the correlation coefficient matrix of input variables is non-positive definite,where the commonly used Cholesky decomposition is no longer applicable. A PLF-CM calculation method with the combination of SVD(Singular Value Decomposition) and UDS(Uniform Design Sampling) is proposed. The random variable samples with the consideration of correlation are obtained by the combination of SVD,UDS and Nataf transformation,which are used to calculate the cumulants of some input variables that are hardly be solved by the conventional numerical methods. The SVD is adopted to deal with the covariance matrix of input variables to accurately calculate the cumulants of output variables,and the probability distribution of output variables is obtained through Cornish-Fisher series expansion. The modified IEEE 14-bus test system is taken as an example to verify the rapidity,effectiveness,and adaptability of the proposed method to high permeability new energy power generation.

关 键 词:电力系统 概率潮流 半不变量法 奇异值分解 均匀设计采样 

分 类 号:TM761[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象