利用稀疏贝叶斯理论的跳时估计方法  被引量:4

Hop timing estimation method by exploiting sparse Bayesian inference

在线阅读下载全文

作  者:张朝柱[1] 王宇 荆福龙 ZHANG Chaozhu;WANG Yu;JING Fulong(College of Information and Communication,Harbin Engineering Univ.,Harbin 150001,China)

机构地区:[1]哈尔滨工程大学信息与通信工程学院

出  处:《西安电子科技大学学报》2019年第3期39-44,共6页Journal of Xidian University

基  金:国家自然科学基金(61671168)

摘  要:当跳频信号的频率不在预设的频率集中时,为了提高跳时估计的正确率,提出了一种基于稀疏贝叶斯理论的跳时估计方法。该方法首先在信号模型中设置频率偏差参数;其次利用狄利克雷过程以及稀疏贝叶斯理论,设计接收信号模型中各个参数的迭代规则,并在每次迭代中利用频率偏差参数修正频率字典矩阵;最后,算法收敛时可得到用于计算谱图的稀疏矩阵,进而可以得到跳时的估计值。仿真结果表明,该算法估计的跳时正确率高于其他方法,并且计算的谱图的真实性也高于其他方法。In order to improve the performance of hop timing estimation when the frequencies of frequency hopping (FH) signals are not in the known frequency set, a novel method is developed based on the sparse Bayesian inference (SBI). The proposed method first sets the frequency bias in the signal model. The updating rules of the parameters are calculated based on the Dirichlet process and SBI, and then the frequency bias is utilized to correct the dictionary matrix. Finally, the sparse matrices and the hop timing estimation can be obtained. Simulation results demonstrate that compared to the existing methods, the proposed method can obtain higher correct ratios of the hop timing estimation and a better performance of the spectrum estimation.

关 键 词:跳频 狄利克雷过程 稀疏贝叶斯理论 稀疏矩阵 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象