检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐利锋[1] 黄祖胜 杨中柱 丁维龙[1] XU Li-Feng;HUANG Zu-Sheng;YANG Zhong-Zhu;DING Wei-Long(School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)
机构地区:[1]浙江工业大学计算机科学与技术学院
出 处:《软件学报》2019年第6期1835-1852,共18页Journal of Software
基 金:国家自然科学基金(31301230,61571400,31471416);浙江省自然科学基金(LY18C130012)~~
摘 要:为解决粒子群优化算法易陷入局部最优值的问题,提出一种引入多级扰动的混合型粒子群优化算法.该算法结合两种经典改进粒子群优化算法的优点,即带惯性参数的标准粒子群优化算法和带收缩因子的粒子群优化算法,在此基础上,引入多级扰动机制:在更新粒子位置时,引入一级扰动,使粒子对解空间的遍历能力得到加强;若优化过程陷入“局部最优”的情况,则引入二级扰动,使得优化过程继续,从而摆脱局部最优值.使用了 6 个测试函数 Sphere 函数、Ackley 函数、Rastrigin 函数、Styblinski-Tang 函数、Duadric 函数及 Rosenbrock 函数来对所提出的混合型粒子群优化算法进行仿真运算和对比验证.模拟运算的结果表明:所提出的混合型粒子群优化算法在对测试函数进行仿真时,其收敛精度和收敛速度都优于另外两种经典的改进粒子群优化算法;另外,在处理多峰函数时,本算法不易被局部最优值所限制.To avoid the locally optimum which is frequently be the result of a calculation of particle swarm optimization (PSO) algorithm, it is proposed in this study a new mixed PSO algorithm with multistage disturbance (MPSO). MPSO combined features from two former classic improved PSO algorithms, which are standard particle swarm optimization (SPSO) and standard particle swarm optimization with a constriction factor (PSOCF). Furthermore, a strategy with multistage disturbances was also introduced into the algorithm: The first-level disturbance was used to enhance the ability of the particles to traverse the solution space when renewing the positions, while the second-level disturbance would be introduced when locally optimal solution was received to continue the optimization process. Six test functions, namely the Sphere, Ackley, Rastrigin, Styblinski-Tang, Duadric, and Rosenbrock functions, were used to simulate the optimization calculation, and the results from proposed algorithm MPSO were compared with those from SPSO and PSOCF. The results show that for the test functions, MPSO can get the optimal value much more quickly and easily than the other two algorithms, and the convergence precision of MPSO was significantly higher than the others. It can be concluded that MPSO can get over the problem of locally optimal solution when dealing with multimodal functions.
关 键 词:粒子群优化算法 混合 多级扰动 局部最优值 遍历能力
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3