检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:楼雯 王慧[1,2] 鞠源 Lou Wen;Wang Hui;Ju Yuan(Department of Information Management, Faculty of Economics and Management, East China Normal University,Shanghai 200241;Institute for Academic Evaluation and Development, East China Normal University, Shanghai 200241;Dianping.com, Shanghai 200042)
机构地区:[1]华东师范大学经济与管理学部信息管理系,上海200241 [2]华东师范大学学术评价与促进研究中心,上海200241 [3]美团大众点评,上海200042
出 处:《情报学报》2019年第6期622-631,共10页Journal of the China Society for Scientific and Technical Information
基 金:国家社会科学基金青年项目“学者驱动的学术资源语义共享模式及其应用研究”(17CTQ025)
摘 要:异构本体的存在带来了知识检索的冗余,基于异构本体的知识融合是十分必要的。大量的语义相似度计算容量与复杂的计算过程使得知识融合变得困难,本文提出二值相似度计算的异构本体融合方法,将语义相似度的计算提前至原始本体的构建过程,融合时只进行概念和关系的二值匹配,从而简化融合过程再次计算语义相似度的过程。文章从实体图书元数据、小样本本体和大样本本体三个角度组织了三个实验,利用武汉大学图书馆书目数据的实验一显示本文方法可以完成本体融合的过程,实验二和实验三显示本文方法可以提高本体融合的准确性,并显著提高运行反馈时间,综合反映本体融合效果良好,但需要在召回率上进行改进。本文方法有望在扩展专家本体、减少本体构建开销等方面体现应用价值。Heterogeneous ontology causes redundancy in knowledge retrieval. Therefore, knowledge fusion based on het erogeneous ontology is necessary. However, because of the massive capacity and complicated processes required for se mantic similarity computing, knowledge fusion has become less simple. In this paper, we propose an ontology fusion meth od based on binary metrics of semantic similarity calculation. In the fusion process, there will be only binary matching, thus aiming to further simplify the calculation of fusion from semantic similarity. Thus, the present research represents a shift from methods locating computing progress at the beginning of original ontology construction. We adopted three experi ments to test the usability of our approach, from the perspectives of (1) actual library resources,(2) a small dataset, and (3) a large dataset. In experiment one, bibliographic data from Wuhan University Library were used to test our proposal s feasi bility and capabilities. Results showed that our approach can completely merge two ontologies into a single theme. The sec ond and third experiments both verified that our approach has the ability to accurately detect merging couples and decrease time cost. The tests demonstrated a good overall fusion result;nevertheless, recall requires future improvement. This meth od is expected to extend the implementation of expert ontology and aid in cost reduction of ontology construction.
关 键 词:异构本体 本体合并 本体融合 语义相似度 知识融合 异构数据
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.214