检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王鹏宇 曾路 吴漾 Wang Pengyu;Zeng Lu;Wu Yang(Information Center,Guizhou Power Grid Corporation Ltd.,Guizhou 550002,China)
机构地区:[1]贵州电网有限责任公司信息中心
出 处:《国外电子测量技术》2019年第4期7-11,共5页Foreign Electronic Measurement Technology
摘 要:通常采用图像特征智能识别以提高对图像高频成分的识别度。基于大数据集域自适应快速算法构建图像特征智能识别模型。在图像特征智能识别模型构建过程中,对于图像特征智能识别过程中容易产生伪图像特征识别、细节性模糊与图像特征智能识别的不间断性问题,使用大数据集域自适应快速算法可以提高图像特征智能识别的效率。经过实验表明,基于大数据集域自适应快速算法的识别特征模型能够有效提升微小图像特征平均识别率,且鲁棒性较好。The ultimate goal of intelligent recognition using image features is to increase the high-frequency components in intelligent recognition of image features(IRIF).In this paper,an intelligent recognition model of image feature based on large data domain adaptive fast algorithm(LDDAFA)is proposed.In the model structure,a large data domain adaptive fast algorithm is introduced in the construction of image feature intelligent recognition model,and the feature recognition and detail can be easily produced in the process of intelligent image recognition.In order to solve the problem of fuzzy and intelligent recognition of image features,the adaptive algorithm of large datasets is applied to intelligent recognition and detection of image features.The experiment shows that the recognition feature model building method based on the large data domain adaptive fast algorithm can accurately identify the signal to the SNR of different sags and ensure that the recognition accuracy can be improved effectively under the condition of low signal to noise ratio.
关 键 词:图像特征智能识别模型 振铃效应 大数据集域 自适应快速算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185