检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Juan J. MANFREDI Virginia N. VERA DE SERIO
机构地区:[1]Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA [2]Facultad de Ciencias Econdmicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
出 处:《Acta Mathematica Sinica,English Series》2019年第7期1115-1127,共13页数学学报(英文版)
基 金:supported in part by NSF(Grant No.DMS-9970687);SECTyP-UNCuyo,Argentina(Res.3853/16-R)
摘 要:In this paper we extend the notion of rearrangement of nonnegative functions to the setting of Carnot groups. We define rearrangement with respect to a given family of anisotropic balls Br , or equivalently with respect to a gauge‖x‖, and prove basic regularity properties of this construction. If u is a bounded nonnegative real function with compact support, we denote by u*its rearrangement. Then, the radial function u* is of bounded variation. In addition, if u is continuous then u* is continuous, and if u belongs to the horizontal Sobolev space W 1,ph , then Dhu*(x)/Dh( ‖x‖ )| is in Lp. Moreover, we found a generalization of the inequality of P(o)lya and Szeg(o) ∫|Dhu*|p/Dh(‖x‖)|pdx≤C ∫|Dhu|pdx,where p ≥ 1.In this paper we extend the notion of rearrangement of nonnegative functions to the setting of Carnot groups. We define rearrangement with respect to a given family of anisotropic balls Br, or equivalently with respect to a gauge ■,and prove basic regularity properties of this construction. If u* is a bounded nonnegative real function with compact support, we denote by u* its rearrangement. Then,the radial function u* is of bounded variation. In addition, if u* is continuous then u* is continuous,and if u* belongs to the horizontal Sobolev space Wh1,p, then ■ is in Lp. Moreover, we found a generalization of the inequality of Pólya and Szeg? ■,where p ≥ 1.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.12