Finite p-groups All of Whose Minimal Nonabelian Subgroups are Nonmetacyclic of Order p^3  被引量:1

Finite p-groups All of Whose Minimal Nonabelian Subgroups are Nonmetacyclic of Order p^3

在线阅读下载全文

作  者:Qin Hai ZHANG 

机构地区:[1]Department of Mathematics, Shanxi Normal University

出  处:《Acta Mathematica Sinica,English Series》2019年第7期1179-1189,共11页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant Nos.11771258 and 11471198)

摘  要:Assume p is an odd prime. We investigate finite p-groups all of whose minimal nonabelian subgroups are of order p^3. Let P1-groups denote the p-groups all of whose minimal nonabelian subgroups are nonme tacyclic of order p^3. In this paper, the P1-groups are classified, and as a by-product, we prove the Hughes' conjecture is true for the P1-groups.Assume p is an odd prime. We investigate finite p-groups all of whose minimal nonabelian subgroups are of order p3. Let P1-groups denote the p-groups all of whose minimal nonabelian subgroups are nonmetacyclic of order p3. In this paper, the P1-groups are classified, and as a by-product,we prove the Hughes’ conjecture is true for the P1-groups.

关 键 词:Finite P-GROUPS a MINIMAL nonabelian SUBGROUP the HUGHES SUBGROUP P-GROUPS of MAXIMAL class 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象