检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭勇 谢林柏 冯宏伟 温子腾 TAN Yong;XIE Lin-bo;FENG Hong-wei;WEN Zi-teng(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China;Wuxi Institute of Technology,Wuxi 214122,China)
机构地区:[1]江南大学物联网工程学院,江苏无锡214122 [2]无锡职业技术学院,江苏无锡214122
出 处:《激光与红外》2019年第6期720-724,共5页Laser & Infrared
基 金:国家自然科学基金项目(No.61374047)资助
摘 要:基于LASSO回归,提出一种应用于三波段红外火焰探测器的具体识别算法,同时进行了硬件电路以及软件程序的设计。在火焰探测器在检测过程中可能出现数据不稳定、环境多样化的复杂情况,从而提取到的特征存在多样性和复杂性。本文利用LASSO回归良好的预测能力、系数压缩能力和特征选择能力,有效提升了对三波段红外火焰的精确度和灵敏度,同时LASSO回归还具有效率高、预测精度高、解释性强等特性。实验证明LASSO相比于传统火焰识别算法在逼近精度、收敛速度和鲁棒性等多个方面都有所提升。Based on LASSO regression,a kind of triple-channel infrared flame detector together with the corresponding recognition algorithm was put forward,and the hardware circuit and software programs were designed in this paper.Because of the data instability and environment diversity in the process of detection,the features extracted are diverse and complex.In this paper,resulted from the good predictive power,coefficient compression capability and feature selection ability of the LASSO regression,the accuracy and sensitivity of the triple-channel infrared flame detector was improved.LASSO regression also has the characteristics of good efficiency,high prediction accuracy and strong interpretation.At last,by comparing LASSO regression with traditional flame recognition algorithms,an experiment was provided to show the improvement in approximation accuracy,convergence speed and robustness.
分 类 号:TM215[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249