我国区域电力行业碳排放效率测算及分析  被引量:5

Calculation and analysis of carbon emission efficiency in China’s regional electric power industry

在线阅读下载全文

作  者:汪中华 申刘岗 WANG Zhong-hua;SHEN Liu-gang(School of Economics and Management, Harbin University of Science and Technology, Harbin 150080, China)

机构地区:[1]哈尔滨理工大学经济与管理学院

出  处:《科技与管理》2019年第3期1-8,共8页Science-Technology and Management

基  金:国家社会科学基金项目(11BMZ057)

摘  要:碳排放效率提升是实现碳减排的重要途径。文章以我国6大区域为研究对象,选取其2000—2016年电力行业的面板数据,使用3阶段DEA模型对我国6大区域电力行业的碳排放效率进行了实证研究。分析结果表明:若不剔除环境因素和随机扰动项的影响,会导致我国电力碳排放效率值被低估;在对原始投入进行调整后,6大区域电力行业碳排放效率的无效率主要来自于规模效率无效,效率值大小表现为“南方>华东>西北>华中>东北>华北”;经济水平、能源强度、环境规制、发用电比例、火力点占比、电力价格、产业结构7个环境变量对电力碳排放效率具有不变方向的影响。The improvement of carbon emission efficiency is an important way to achieve carbon emission reduction. This paper takes the power grid of six regions in China as the research object, selects the panel data of the power industry from 2000 to 2016, and uses the three-stage DEA model to conduct an empirical study on the carbon emission efficiency of the power grid of six regions in China. The analysis results show that if the influence of environmental factors and random disturbance items are not eliminated, the carbon emission efficiency of China's power grid will be underestimated. After adjusting the original input, the inefficiency of carbon emission efficiency in the power industry in the six major regions mainly comes from the inefficiency of scale efficiency. The efficiency values are shown as follows:“South>East China>Northwest>Central China>Northeast China>North China”. The seven environmental variables of economic level, energy intensity, environmental regulation, power generation and consumption ratio, power point ratio, power price and industrial structure have constant influence on the efficiency of electricity carbon emission.

关 键 词:碳排放效率 3阶段DEA 投入 产出 

分 类 号:F061.5[经济管理—政治经济学] F062.4

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象