检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱梅[1] 魏琴 ZHU Mei;WEI Qin(College of Public Administration and Law, Hunan Agricultural University, Changsha 410128, China)
机构地区:[1]湖南农业大学公共管理与法学学院
出 处:《湖南农业大学学报(社会科学版)》2019年第3期76-82,89,共8页Journal of Hunan Agricultural University(Social Sciences)
摘 要:基于31个省(区、市)的面板数据,应用DEA-Malmquist和Tobit模型对中国职工基本养老保险基金效率及影响因素进行分析,结果显示:2017年有28个省域未达到DEA有效,其中12个省域区纯技术效率小于1;非DEA有效地区的规模效率都小于1,其中19个省域处于规模报酬递减;7个全要素生产率为正增长的地区,均受益于技术进步的贡献;全要素生产率为负增长的24个省域中,其影响因素存在较大的地区差异,政府规模、制度赡养率、老年抚养比具有显著正影响,生产总值、在岗职工平均工资具有显著负影响。Based on the panel data of 31 provinces (regions and cities), the efficiency and impact factors of Chinese Basic Endowment Insurance Fund for the Urban Working Group are analyzed with DEA-Malmquist and Tobit models. The results show that 28 provinces (regions and cities) failed to realize DEA effectiveness in 2017, among which both the pure technical efficiency in 12 provinces and regions and the scale efficiency of non-DEA effective areas are less than 1,with 19 provinces (regions and municipalities) at the stage of decreasing returns to scale. 7 regions with positive factor productivity benefit from the contributions of technological progress. And the impact factors of the 24 provinces where the total factor productivity (TFP) is negative present striking regional differences. Government size, institutional support and the old-age dependency ratio have a significant positive impact whereas the gross domestic product and the average wage of the employed workers have a significant negative impact.
关 键 词:职工基本养老保险基金 效率 全要素生产率 影响因素 DEA-Malmquist模型 TOBIT模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117