主动式网络脚本病毒实时防御系统设计  被引量:1

Research on noise reduction method of laser particle image in mixed noise environment

在线阅读下载全文

作  者:张博[1] ZHANG Bo(Information Technology Department of Beijing College of Political Science and Law,Beijing 102628,China)

机构地区:[1]北京政法职业学院信息技术系

出  处:《电子设计工程》2019年第13期58-61,65,共5页Electronic Design Engineering

基  金:北京政法职业学院科研课题(KY201808)

摘  要:网络脚本病毒是一种新型的计算机病毒类别,攻击型更强、网络威胁更大,而传统的被动式脚本病毒防御体系无法动态、有效地保护本地局域网安全,为此设计了一种防御能力更强的主动式网络脚本病毒实时防御系统。脚本病毒实时防御系统的硬件部分由检测模块、数据包捕获模块、协议分析模块、系统验证模块、脚本病毒特征提取模块和结果显示模块构成;在主控程序的设计方面利用PDRR模型匹配脚本病毒的类别,并基于朴素的贝叶斯理论验证脚本文件训练集的条件概率,将病毒的防御问题转化为后验概率的求解问题,提高了对脚本病毒文件的识别率。仿真结果表明,提出设计在网络脚本病毒防御中的连接发起成功率更高、系统响应时间更短,脚本病毒绝对误差控制效果也优于传统防御系统。Network script virus is a new type of computer virus,which is more aggressive and more threatening.However,the traditional passive script virus defense system cannot dynamically and effectively protect local area network security.Therefore,an active network script virus real-time defense system with stronger defense capability is designed.The hardware part of script virus real-time defense system consists of detection module,data packet capture module,protocol analysis module,system verification module,script virus feature extraction module and result display module.In the design of control program,the model is used to match the type of script virus,and the conditional probability of script file training set is verified based on naive Bayesian theory.The defense problem is transformed into a posteriori probability solving problem,which improves the recognition rate of script virus files.The simulation results show that the proposed network script virus defense system has higher connection initiation success rate,shorter system response time and better absolute error control effect than the traditional passive defense system.

关 键 词:主动式 网络脚本病毒 PDRR模型 朴素贝叶斯理理论 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象