UNCONDITIONAL SUPERCONVERGENCE ANALYSIS OF AN Ri-GALERKIN MIXED FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL GINZBURG-LANDAU EQUATION  

在线阅读下载全文

作  者:Dongyang Shi Junjun Wang 

机构地区:[1]School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China

出  处:《Journal of Computational Mathematics》2019年第4期437-457,共21页计算数学(英文)

基  金:Natural Science Foundation of China (Grant Nos. 11671369, 11271340).

摘  要:An H^1-Galerkin mixed finite element method (MFEM) is discussed for the two-dimensional Ginzburg-Landau equation with the bilinear element and zero order Raviart-Thomas elemen t (Q11+Q10×Qo01). A linearized Crank-Nicolson fully-discrete scheme is developed and a time-discrete system is introduced to split the error into two parts which are called the temporal error and the spatial error, respectively. On one hand, the regularity of the time-discrete system is deduced through the temporal error estimation. On the other hand, the superconvergent estimates of u in H^1-norm and →q in H(div;Ω)-norm with order 0(h^2+τ^2) are obtained unconditionally based on the achievement of the spatial result. At last, a numerical experiment is included to illustrate the feasibility of the proposed method. Here, h is the subdivision parame ter and τ is the time step.

关 键 词:The TWO-DIMENSIONAL GINZBURG-LANDAU equation H^Galerkin MFEM Temporal and spatial ERRORS Unconditionally Superconvergent resillts 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象