机构地区:[1]北京师范大学应用光学北京重点实验室和物理系,北京100875 [2]上海应用技术大学材料科学与技术系,上海200235 [3]中国科学院上海光学精密机械研究所,上海201800
出 处:《光谱学与光谱分析》2019年第7期2293-2298,共6页Spectroscopy and Spectral Analysis
基 金:The National Natural Science Foundation of China(51472028);the Fundamental Research Funds for the Central Universities of China(2017TZ01)
摘 要:有趣的贵金属表面等离激元的光学性质,尤其是在发光增强领域的表现,使得它已经成为全球的一个研究热点。表面等离激元就是光与贵金属中的自由电子相互作用时,自由电子和光波电磁场由于共振频率相同而形成的一种集体振荡态。该文研究了碲化物玻璃中银纳米颗粒的表面等离激元共振增强铒离子的发光。我们测量了吸收谱、激发谱、发光谱以及荧光寿命。首先,我们挑选365.5和379.0nm吸收峰作为激发波长测量了385~780nm波长范围的可见发光光谱,发现有4个发光峰,依次位于408.0,525.0,546.0和658.5nm,容易指认出它们依次为铒离子的2H9/2→4I15/2,2H11/2→4I15/2,4S3/2→4I15/2和4F9/2→4I15/2的荧光跃迁;可以计算出[80nm平均粒径纳米银的Er^3+(0.5%)Ag(0.2%):碲化物玻璃的样品A]的上述4个可见发光的峰值强度是[Er^3+(0.5%):碲化物玻璃的样品C]的大约1.44~2.52倍。同时,[50nm平均粒径纳米银的Er^3+(0.5%)Ag(0.2%):碲化物玻璃的样品B]的上述4个可见发光的峰值强度是样品C的大约1.08~1.55倍。随后,我们挑选365.5和379.0nm吸收峰作为激发波长测量了928~1680nm波长范围的近红外发光光谱,发现近红外波段有两个发光峰,位于979.0和1530.0nm,容易指认出它们依次为铒离子的4I11/2→4I15/2和4I13/2→4I15/2的荧光跃迁;同样可以计算出样品A的上述2个近红外发光的峰值强度是样品C的大约1.43~2.14倍。同时,样品B的上述2个近红外发光的峰值强度是样品C的大约1.28~1.82倍。因此,发光的最大增强大约是2.52倍。从荧光寿命动力学实验,我们发现样品A的荧光寿命为τA(550)=43.5μs,样品B的荧光寿命为τB(550)=43.2μs,样品C的荧光寿命为τC(550)=48.6μs。这些实验结果证实了τA≈τB<τC。它意味着样品(B)相对于样品(C)的发光增强是源于自发辐射增强效应。然而,它也意味着样品(A)相对于样品(B)的发光增强是源于纳米银颗粒的粒径尺寸r�Interesting optical properties of metal surface plasmon, especially the behavior on luminescence enhancement field, have become a hot research topic globally. The surface plasmon is just a kind of collective oscillation made of free electron and light electromagnetic fields because their resonant frequencies are similar when they are interacting with each other. In present paper, the erbium luminescence resonant enhanced by surface plasmon of Ag nanoparticles(NPs) in telluride glass is studied. The absorption, excitation, luminescence spectra, and lifetime are measured. First, we select the 365.5 and 379.0 nm excitation peaks as excitation wavelength to measure the visible luminescence spectra in the wave range of 385~780 nm. We find 4 luminescence peaks positioned at 408.0, 525.0, 546.0, and 658.5 nm. They are, respectively, the fluorescence transitions of 2H9/2→4I15/2, 2H11/2→4I15/2, 4S3/2→4I15/2, and 4F9/2→4I15/2 of Er3+ ions. It is easy to calculate the peak intensities of the above 4 visible luminescence of(A) Er^3+(0.5%)Ag(0.2%): Telluride glass with the average diameter of 80 nm for Ag NPs are about 1.44~2.52 times larger than that of the(C) Er^3+(0.5%): Telluride glass. Moreover, the peak intensities of the above 4 visible luminescence spectra of(B) Er^3+(0.5%)Ag(0.2%): Telluride glass with the average diameter of 50 nm for Ag NPs are about 1.08~1.55 times larger than that of the sample(C). Then, we select the 365.5 and 379.0 nm excitation peaks as excitation wavelength to measure the near infrared luminescence spectra in the wave range of 928~1 680 nm. It is found that near infrared luminescence peaks are positioned at 979.0 and 1 530.0 nm. They are, respectively, the fluorescence transitions of 4I11/2→4I15/2 and 4I13/2→4I15/2 of Er3+ ions. The peak intensities of the above 2 near infrared luminescence spectra of sample(A) are about 1.43~2.14 times larger than that of the sample(C). Similarly, the peak intensities of the above 2 near infrared luminescence spectra of sample(B) are about 1.28~1
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...