检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗琴[1] 莫泽瑞 刘金花 LUO Qin;MO Zerui;LIU Jinhua(School of Physics and Electronic Science,Guizhou Normal University,Guiyang,Guizhou 550025,China;Archives of Guizhou Normal University,Guiyang,Guizhou 550025,China)
机构地区:[1]贵州师范大学物理与电子科学学院,贵州贵阳550025 [2]贵州师范大学档案馆,贵州贵阳550025
出 处:《贵州师范大学学报(自然科学版)》2019年第4期83-85,120,共4页Journal of Guizhou Normal University:Natural Sciences
基 金:贵州省科学技术基金(黔科合J字[2011]2112号)
摘 要:采用矩阵乘积态算法对不同单粒子各向异性系数(D=-0.6,-0.3,0,0.3,0.6)和类伊辛参数(Jz=-0.5)的一维量子XXZD模型的基态进行模拟,基于基态波函数中纠缠的概念,计算冯诺依曼熵和平移算子之间的标度关系,从而确定中心荷和相比普适类。任意选取临界区域内的单粒子各向异性参数,研究了一维量子XXZD模型的单点几何纠缠的有限尺寸修正项系数与Luttinger液体紧致半径之间的关系。结果表明,单点几何纠缠的有限尺寸修正的方法是一种普适的研究量子临界性的方法,可以简捷的计算出Luttinger液体的紧致半径值。The ground state wavefunction is simulated by matrix product state algorithm of one-dimensional XXZD model with different single-particle anisotropy coefficients ( D =-0.6,-0.3,0,0.3,0.6) and Ising-like parameters ( J z =-0.5).Based on the concept of entanglement,the central charge and the relative universal class will be determined by the scaling relation between von Neumann entropy and translation operator.Arbitrary selection of single particle anisotropic parameters within the critical region.We researched The relationship between the finite-size correction coefficient of geometric entanglement per site and the compact radius of Luttinger liquid in one-dimensional quantum XXZD model.The researched results shows that the compact radius of Luttinger liquid can be calculated simply and the finite-size correction method of geometric entanglement per site is an universal method to study quantum criticality.
分 类 号:O561[理学—原子与分子物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145