检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mojtaba M. Amiri Marcelo A. Vitola Sergio H. Sphaier, Paulo T. Esperanza
出 处:《Journal of Hydrodynamics》2019年第3期570-581,共12页水动力学研究与进展B辑(英文版)
摘 要:An axisymmetric body at incidence experiences the three-dimensional crossflow separation. This separation is attributed to the adverse circumferential pressure gradient. However, the separation pattern is also dependent upon the structure of the boundary layer. In this regard, utilization of transition strip devices in experiments on axisymmetric bodies may modify this structure, and consequently the crossflow separation pattern. The main objective of the present research is to mimic numerically the transition strip effect on the crossflow separation over a 6:1 prolate-spheroid up to a = 30° incidence and ReL = 4.2 x 10&. However, to avoid direct modeling of the strip, which would increase the computational cost, an attempt was made to add roughness over the body surface. To estimate the roughness that simulates closely the transition strip effect, three different roughness values were considered. The numerical model is based on RANS and a Reynolds stress turbulence model implemented in STARCCM+. The simulations have been evaluated based on the local and global variables and validated against the available experimental data. The results demonstrate the effectiveness of using a proper roughness value to mimic the transition strip effect. They also show the importance of modeling the transition strip effect, which is normally not taken into account, to capture the crossflow separation pattern.
关 键 词:AXISYMMETRIC body CROSSFLOW separation TRANSITION strip device CFD RANS equations
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171