检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乔厚 何锃[1] 张恒堃 彭伟才[2] 江雯[1] Qiao Hou;He Zeng;Zhang Heng-Kun;Peng Wei-Cai;Jiang Wen(Department of Mechanics,Huazhong University of Science and Technology,Wuhan 430074,China;National Key Laboratory on Ship Vibration and Noise,China Ship Development and Design Center,Wuhan 430064,China)
机构地区:[1]华中科技大学力学系,结构分析与安全评定湖北省重点实验室,武汉430074 [2]中国舰船研究设计中心,武汉430064
出 处:《物理学报》2019年第12期239-253,共15页Acta Physica Sinica
基 金:国家自然科学基金(批准号:11572137)资助的课题~~
摘 要:为取得理想的隔声性能,本文结合多孔介质和周期结构两类声振调控方案,讨论了一种新型含多孔介质周期复合结构;采用等效模型描述振子系统,利用薄板理论和Biot理论建立了相应的声振耦合理论模型.利用此模型计算得出的结果与文献中数据吻合良好.研究结果表明,采用简单振子系统或组合振子系统都可以在其特征频率决定的频域提升复合结构的声传递损失(STL);然而,在越过相应频域后,STL会急剧下降,选取合适的振子参数,可以拓展隔声带宽而又保持其STL水平.对比振子系统结果发现,相对简单振子系统,组合振子系统能在获得更宽STL提升频域同时减弱特征频率域后的STL下降趋势.这些结果可以为宽频减振降噪提供思路,为中低频域隔声应用设计提供理论参考.To obtain excellent sound reduction performance, in this paper we introduce a novel periodic poroelastic composite structure, which combines poroelastic material and periodic structure and aims at using the remarkable acoustic performance of these two. This periodic composite structure comprises three parts, i.e. the poroelastic domain, the elastic domain(thin plate), and the periodic resonators, which can be simple singledegree-of-freedom resonators(SRs) or composite two-degree-of-freedom resonators(CRs). A theoretical model is established by using Biot theory for the poroelastic domain, and by using the effective medium method for the resonator-plate coupling system, which is considered as an isotropic plate with an equivalent dynamic density.This method is validated with degenerated model in the literature;the results obtained by this method are in excellent consistence with the results in the literature. Parameter analyses are performed to test the influences of poroelastic addition and periodic resonator on the sound transmission loss(STL) of this periodic composite structure under two kinds of boundary conditions. The poroelastic addition is found to increase the STL while the influences of resonators are complicated. The STL increases notably in the frequency range bounded by the characteristic frequencies of these resonators, however, a decrease just follows when it exceeds these frequencies,which can be observed in both SR case and CR case under the two boundary conditions. In the meantime, when multiple SR is placed in a periodic lattice, it is found that different resonators with ascending mass and characteristic frequencies have superior STL to those with ascending characteristic frequencies but have equal mass. The case with CR, which is more complicated as expected, shows less STL decrease than the case with SR, but wider frequency range where the STL increases than a poroelastic composite structure without resonators. This results from the fact that the frequency band of vibration suppression in th
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145