基于ELM改进层集成架构的时间序列预测  被引量:4

Time series forecasting based on ELM improved layered ensemble architecture

在线阅读下载全文

作  者:樊树铭 覃锡忠[1] 贾振红[1] 牛红梅 王哲辉 FAN Shu-ming;QIN Xi-zhong;JIA Zhen-hong;NIU Hong-mei;WANG Zhe-hui(College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;China Mobile Communications Group Xinjiang Limited Company,Urumqi 830063,China)

机构地区:[1]新疆大学信息科学与工程学院,新疆乌鲁木齐830046 [2]中国移动通信集团新疆有限公司,新疆乌鲁木齐830063

出  处:《计算机工程与设计》2019年第7期1915-1921,共7页Computer Engineering and Design

基  金:中国移动通信集团新疆有限公司研究发展基金项目(XTM2013-2788)

摘  要:为进一步提高时间序列预测模型的预测精度和时间效率,提出一种基于极限学习机的层集成网络结构。以极限学习机网络作为基学习器,构成两层集成网络,每层网络在构建时利用先分类,再从类中选优的思想同时考虑基学习器的准确性与多样性,其中第一层用以优化参数,第二层实现预测。对比实验结果表明,与基于多层感知器的层集成网络相比,该模型在提高预测准确度的同时将学习用时缩短了1-2个数量级。To further improve the prediction accuracy and efficiency of the time-series prediction model,an extreme learning machine based layered ensemble network was proposed. Extreme learning machine networks were taken as base predictors and consisted of two ensemble layers. Each layer considered both accuracy and diversity of the individual networks in constructing the ensemble by taking the strategy in which the best was selected after classification. The first ensemble layer was used to find an appropriate lag,while the second one was used to employ the obtained lag for forecasting. The proposed model was tested in comparison experiments. The results reveal clearly that compared with the layered ensemble architecture based on multilayer perceptron,the proposed model not only improves the prediction accuracy,but also improves the time efficiency by 1-2 orders of magnitude.

关 键 词:时间序列预测 极限学习机 集成学习 聚类 自助采样 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象