检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴能光 王华珍[1] 许晓泓 刘俊龙 何霆 吴谨准[2] Wu Nengguang;Wang Huazhen;Xu Xiaohong;Liu Junlong;He Ting;Wu Jinzhun(School of Computer Science and Technology,Huaqiao University,Xiamen 361021,Fujian,China;Department of Pediatrics,The First Affiliated Hospital of Xiamen University,Xiamen 361003,Fujian,China)
机构地区:[1]华侨大学计算机科学与技术学院,福建厦门361021 [2]厦门大学附属第一医院儿科,福建厦门361003
出 处:《计算机应用与软件》2019年第7期177-182,191,共7页Computer Applications and Software
基 金:国家自然科学基金面上项目(61673186);福建省自然科学基金面上项目(2012J01274)
摘 要:针对胸片的多标记预测集缺少可校准性的缺陷,提出一种基于卷积神经网络(Convolutional Neural Networks,CNN)与归纳一致性预测器(Inductive Conformal Prediction,ICP)的多标记胸片置信诊断模型MLICP-CNN。该模型将学习数据划分为训练集和校准集,通过使用CNN从训练集中学习出规则D。基于规则D和校准集使用算法随机性对被测数据进行置信预测,即为每个被测数据提供附带置信度的多标记预测集。在对Chest X-ray14胸片数据集的实验结果表明,该模型在临床常用的95%置信度下,模型准确率为95%,体现了置信度评估的恰好可校准性。在CNN架构为Resenet50并采用LS-MLICP为奇异值映射函数下,模型性能最好,其确定预测率为96.43%,理想预测率为92.31%。另外,CNN架构对预测效率的影响程度远远小于奇异值映射函数。To address the absence of calibrated confidence evaluation of multi-label prediction for chest x-ray,we proposed a multi-label chest X-ray confidence diagnosis model based on CNN and ICP,named MLICP-CNN. Our model divided the learning data into training set and calibration set,and a rule D was learned from the training set through CNN. Based on rule D and calibration set,we used the randomness of the algorithm to predict the confidence of the measured data,that is,to provide a multi-label prediction set with confidence for each measured data. The experimental results on the chest X-ray14 set demonstrate that the accuracy rate of MLICP-CNN is exactly 95% under the confidence levels of 95% in common clinical,revealing the exactly validity of confidence evaluation. In addition,when using Resenet50 as the component of CNN framework and adopting LS-MLICP as a nonconformity measure,our model gains the best performance with the certain prediction of 96.43% and favorite prediction of 92.31%. The influence of CNN framework on prediction efficiency is significantly less than that of the nonconformity measure.
关 键 词:多标记学习 归纳一致性预测器 卷积神经网络 X线胸片诊断 置信预测
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222