检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹睿智 尚媛园[1,2] 郭国栋 邵珠宏 丁辉[1,2] Zou Ruizhi;Shang Yuanyuan;Guo Guodong;Shao Zhuhong;Ding Hui(College of Information Engineering,Capital Normal University,Beijing 100048,China;Beijing Advanced Innovation Center for Imaging Technology,Beijing 100048,China;Beijing Key Laboratory of Electronic System Reliability Technology,Beijing 100048,China;Department of Computer Science and Electrical Engineering,West Virginia University,Morgantown 26506,West Virginia,USA)
机构地区:[1]首都师范大学信息工程学院,北京100048 [2]北京成像技术高精尖创新中心,北京100048 [3]电子系统可靠性技术北京市重点实验室,北京100048 [4]西弗吉尼亚大学计算机科学与电气工程系,西弗吉尼亚摩根城26506
出 处:《计算机应用与软件》2019年第7期242-248,共7页Computer Applications and Software
基 金:国家自然科学基金项目(61876112,61601311,61603022);北京市属高校高水平教师队伍建设支持计划项目(CIT&TCD20170322);北京市优秀人才资助项目(2016000020124G088);北京市教委科研计划项目(SQKM201810028018);首都师范大学青年科研创新团队项目
摘 要:BMI是目前国际上常用的衡量人体胖瘦程度以及是否健康的一个标准。通常情况下,BMI是由个体的身高和体重计算得到的。目前,国外的研究人员提出了基于人脸图像预测BMI的算法,通过构建面部特征与BMI之间的关联集合,利用SVR回归模型进行BMI预测工作。该算法在实验室实验环境下表现良好,但在日常生活应用环境下仍有较大的预测误差。为了提高BMI预测算法在日常生活应用环境下的预测精度,提出面部区域面积比(RAR)、嘴颌宽度比(MJWR)和颊宽高度比(CWHR)这三种新的面部特征用于补充改进BMI预测算法,同时使用神经网络拟合代替SVR回归进行BMI预测实验。实验结果表明,在日常生活应用环境下,改进的BMI预测算法使得预测结果更加精确,BMI预测的平均绝对误差(MAE)降低了0.7。BMI is a standard commonly used in the world to measure the obesity and health of the human body. Usually,the BMI is calculated from the height and weight of the individual. Nowadays,researchers have proposed the algorithm of the BMI prediction based on face images. They built the collection set between facial features and BMI,and predicted the BMI by SVR regression model. The algorithm performs well in the laboratory test environment,but there is still a large error when it is used in daily application. For improving prediction accuracy of the algorithm in daily application,we proposed three new facial features added to the algorithm. They are the region-to-area ratio(RAR),the mouth-to-jaw-width ratio(MJWR) and the cheek width-to-height ratio(CWHR). In addition,a neural network fitting model was used in BMI prediction instead of SVR regression. The experimental results show that in the daily life application environment,the improved BMI prediction algorithm makes the prediction results more accurate,and the MAE of BMI prediction is reduced by 0.7.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222