采用再生制动的地铁时刻表节能优化研究  被引量:6

Research on energy saving optimization of metro timetable using regenerative braking

在线阅读下载全文

作  者:李灿 汪仁智 李德伟[1] 席裕庚[1] LI Can;WANG Ren-zhi;LI De-wei;XI Yu-geng(Department of Automation, Shanghai Jiao Tong University;Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China)

机构地区:[1]上海交通大学自动化系,系统控制与信息处理教育部重点实验室,上海200240

出  处:《控制理论与应用》2019年第7期1024-1035,共12页Control Theory & Applications

基  金:国家自然科学基金项目(61573239,61433002,61590924,61521063)资助~~

摘  要:地铁运行的主要成本是电能消耗,如何降低地铁运行能耗是建设绿色城市的重要课题.本文从列车运行时再生制动产生回馈电网能量出发,建立采用再生制动的地铁列车运行能耗模型.进而,将地铁运行节能问题转化为地铁列车时刻表优化问题,并引入列车运行约束和混合逻辑动态模型约束将该问题建模为一个非线性混合整数规划问题.本文设计了分解协调优化算法,以列车停站时间和发车时间间隔作为优化操作变量进行优化.从仿真结果可知,以不同的操纵变量进行优化均能有效提高再生制动能量利用率,且分解协调算法的求解结果优于传统的模拟退火算法.The subway-based urban transit has been used widely because it can alleviate the serious problem of urban traffic congestion effectively.Electric energy consumption contributes the most part of its cost.So it is necessary to reduce the energy consumption of subway operation so as to build an environment friendly city.Aiming at this problem,energy consumption model with utilization of regenerative braking energy can be built.Then,combining energy consumption model,train operation constraints and mixed logic dynamic model constraints,the optimization problem is transformed into a nonlinear mixed integer program problem.Heuristic algorithm is used widely to solve this kind of problem.However,this thesis has designed a decomposition and coordination algorithm to get a better solution.The succession time and station dwell act as manipulated variables and both of them can improve regenerative braking energy utilization rate effectively.Compared with the solution of annealing algorithm,decomposition and coordination algorithm should be better.

关 键 词:地铁列车 时刻表 再生制动 节能优化 

分 类 号:U270.35[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象