检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xianhui Fu Meiyuan Ni
机构地区:[1]School of Mathematics and Statistics, Northeast Normal University Changchun 130024, China
出 处:《Algebra Colloquium》2019年第2期259-270,共12页代数集刊(英文版)
基 金:National Natural Science Foundation of China (No. 11671069).
摘 要:Let R be an associative ring with identity. Denote by ((R-mod)^op, Ab) the category consisting of contravariant functors from the category of finitely presented left R-modules R-mod to the category of abelian groups Ab. An object in ((R-mod)^op, Ab) is said to be a stable functor if it vanishes on the regular module R. Let T be the subcategory of stable functors. There are two torsion pairs t1=(Gen(-,R),T)and t2=(T,F1), where 1 is the subcategory of ((R-mod)^op, Ab) consisting of functors with flat dimension at most 1. In this article, let R be a ring of weakly global dimension at most 1, and assume R satisfies that for any exact sequence 0 → M → N → K → 0, if M and N are pure injective, then K is also pure injective. We calculate the cotorsion pair (⊥T,(⊥T)⊥)cogenerated by T clearly. It is shown that G∈⊥T if and only if G/t1(G) is a projective object in T, i.e., G/t1(G)=(-,M) for some R-module M;and G∈(⊥T)⊥ if and only if G/t2(G) is of the form (-, E), where E is an injective R-module.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.183