检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋勇[1] Jiang Yong
机构地区:[1]复旦大学中文系
出 处:《当代修辞学》2019年第4期32-47,共16页Contemporary Rhetoric
摘 要:本文运用博弈论分析曲言负极词的语用得体性,欲解答两个问题:(1)如何衡量曲言负极词的语用得体性?(2)为何自然语言中会存在曲言负极词?先评论Israel(2006,2011)提出的梯级模型理论对曲言负极词的解释力,然后用博弈支付矩阵图对比分析曲言负极词和直言的语用得体性。我们发现:局中人的支付(即收益)是衡量曲言负极词的语用得体性的依据;自然语言中存在曲言负极词与讲话人的博弈优选策略紧密相关。This paper discusses the pragmatic felicity condition of the negative polarity items ( NPIs) of litotes with a view to understanding the criterion to judge the pragmatic felicity,the reasons why such forms should exist. We point out the rooms to be improved in Israel's ( 2006,2011) Scalar Model of Polarity,and offer contrastive analyses of the felicity of the NPIs of litotes and positive assertions in the framework of game theory. We find out that the payoff of the players play an important role in the judgment of felicity,the existence of the NPIs of litotes is closely related to the optimal strategies in language games.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.211.202