基于公共信息模型和大数据的电网可视化  被引量:4

Power System Visualization Based on the Common Information Model and Big Data

在线阅读下载全文

作  者:吴军英 常永娟 杨力平 赵劭康 WU Jun-ying;CHANG Yong-juan;YANG Li-ping;ZHAO Shao-kang(Information & Telecommunication Brach, State Grid Hebei Electric Power Company, Shijiazhuang 050011 China)

机构地区:[1]国网河北省电力有限公司信息通信分公司

出  处:《自动化技术与应用》2019年第6期45-49,共5页Techniques of Automation and Applications

摘  要:智能电网运行商对电网的运行状态的监控对于电力系统安全稳定运行至关重要。目前我国电力系统大数据仍处于探索阶段,大数据使用效率不高、可视化实现困难等问题依然存在,直接影响了实时或者准实时量测数据的可视化以及直观地获取电网运行状态、掌握电网动态特征的效果。为此,本文分析了公共信息模型和大数据技术在智能电网可视化方面的作用和实现。首先总结了电网可视化的特征,分析了在电网实时数据监控和电网历史数据跟踪两种背景下的可视化应用。最后提出了将GIS与公共信息模型结合从而提高可视化效率的机制,并针对大数据在电网负荷分析、低压监测、线损分析等方面实现可视化后可达到的效果进行了讨论。最后对电网监控数据的可视化发展进行了总结展望。The monitoring of the operating status of the grid by the smart grid operator is essential for the safe and stable operation of the power system. At present, China's power big data is still in the exploratory stage. The problems of inefficient use of big data and difficulty in visualization still exist, directly affecting the visualization of real-time or quasi-real-time measurement data and intuitively obtaining the operating status of the grid and mastering the dynamics of the grid. To this end, this paper analyzes the role and implementation of public information models and big data technologies in the visualization of smart grids. Firstly, the characteristics of grid visualization are summarized, and the visualization application in real- time data monitoring and grid historical data tracking is analyzed. Secondly, a mechanism of combining GIS with public information model is proposed to improve the visualization efficiency, and the effect that big data can achieve after visualization in grid load analysis, low-voltage monitoring and line loss analysis is proposed. Finally, the visualization development of grid monitoring data is summarized.

关 键 词:公共信息模型 大数据 电网可视化 智能电网 

分 类 号:TP11.13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象