A Renormalized-Hamiltonian-Flow Approach to Eigenenergies and Eigenfunctions  被引量:1

A Renormalized-Hamiltonian-Flow Approach to Eigenenergies and Eigenfunctions

在线阅读下载全文

作  者:Wen-Ge Wang 王文阁(Department of Modern Physics, University of Science and Technology of China)

机构地区:[1]Department of Modern Physics, University of Science and Technology of China

出  处:《Communications in Theoretical Physics》2019年第7期861-868,共8页理论物理通讯(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos.11275179,11535011,and 11775210

摘  要:We introduce a decimation scheme of constructing renormalized Hamiltonian flows,which is useful in the study of properties of energy eigenfunctions,such as localization,as well as in approximate calculation of eigenenergies.The method is based on a generalized Brillouin-Wigner perturbation theory.Each flow is specific for a given energy and,at each step of the flow,a finite subspace of the Hilbert space is decimated in order to obtain a renormalized Hamiltonian for the next step.Eigenenergies of the original Hamiltonian appear as unstable fixed points of renormalized flows.Numerical illustration of the method is given in the Wigner-band random-matrix model.

关 键 词:generalized Brillouin-Wigner perturbation theory HAMILTONIAN FLOW EIGENFUNCTION structure EIGENVALUE 

分 类 号:O3[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象