基于量子进化的信号稀疏分解方法  被引量:1

Signal sparse decomposition method based on quantum evolution

在线阅读下载全文

作  者:余发军 瞿博阳[1] 刘义才 YU Fajun;QU Boyang;LIU Yicai(School of Electric and Information Engineer,Zhongyuan University of Technology,Zhengzhou 450007,China;School of Mechanical-electronic and Automobile Engineering,Wuhan Business University,Wuhan 430056,China)

机构地区:[1]中原工学院电子信息学院,河南郑州450007 [2]武汉商学院机电工程与汽车服务学院,湖北武汉430056

出  处:《量子电子学报》2019年第4期393-401,共9页Chinese Journal of Quantum Electronics

基  金:国家自然科学基金,61673404,61473266;河南省高校重点科研项目,18B510020;中原工学院青年骨干教师资助项目,2018XQG10~~

摘  要:稀疏分解将信号表达为冗余字典中少量原子的线性组合,其分解的精度对其广泛应用具有重要影响。提出了基于量子进化算法的稀疏分解方法,利用增强型量子比特概率幅对Gabor原子进行染色体编码,采用简化形式的梯度进化操作和逐代缩减的变异操作进行种群个体的更新,以稀疏分解的残余信号与Gabor原子的内积作为适应度函数,筛选出每次稀疏分解的最佳原子。通过两个仿真信号的稀疏分解实验和轴承振动信号的故障特征提取实验,验证了所提方法较其他方法具有更高的分解精度。Sparse decomposition expresses a signal as a linear combination of a small number of atoms in a redundant dictionary.The accuracy of the decomposition has an important influence on its wide application.A sparse decomposition method based on quantum evolution algorithm is proposed.The Gabor atoms are encoded by the enhanced qubit probability amplitude.Simplified gradient evolution operation and generation-by-generation reduction mutation operation are used to update the individual population.And the inner products of the residual signal of sparse decomposition and Gabor atoms are used as the fitness to filter out the best atoms for each sparse decomposition.Two experiments on sparse decomposition of simulation signals and the fault feature extraction experiments of the bearing vibration signals are carried out.It’s proved that the proposed method has a higher decomposition accuracy than the other methods.

关 键 词:量子光学 量子进化算法 逐代缩减变异操作 信号稀疏分解 

分 类 号:TP274.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象