基于微信的海量市场营销数据挖掘系统设计  被引量:2

Design of massive marketing data mining system based on WeChat

在线阅读下载全文

作  者:李俊佳[1] 贾斌[2] LI JunJia;JIA Bin(Xi'an Siyuan university,Xi'an Shanxi 710038,China;Xi'an University of Science and Technology,Xi'an Shanxi 710054,China)

机构地区:[1]西安思源学院,西安710038 [2]西安科技大学,西安710054

出  处:《自动化与仪器仪表》2019年第7期84-87,共4页Automation & Instrumentation

基  金:软科学研究计划-面上项目:基于线上旅游产品供需错配背景下的陕西旅游产品体系构建研究(No.2017KRM205)

摘  要:为了提高海量市场营销数据管理和调度能力,进行海量市场营销数据挖掘系统优化设计,提出一种基于微信的海量市场营销数据挖掘系统,采用大数据处理技术进行海量市场营销数据优化调度和管理,构建海量市场营销数据信息采样和自适应调度模型,提取海量市场营销数据的组元特征量,采用语义特征提取方法进行海量市场营销数据信息匹配和模糊检测,计算海量市场营销数据组元特征的模糊关联度信息,结合模糊C均值聚类方法进行海量市场营销数据挖掘后自动信息聚类处理,提高海量市场营销数据的扩展查询和并行挖掘能力。基于微信平台进行挖掘系统的开发设计,在嵌入式总线中实现市场营销的数据的自动调度和挖掘。仿真结果表明,采用该系统能有效实现对海量市场营销数据挖掘,挖掘输出的并行调度能力较强,系统稳定可靠。In order to improve the management and scheduling ability of mass marketing data,the optimization design of mass marketing data mining system is carried out,and big data processing technology is used to optimize the scheduling and management of mass marketing data.A mass marketing data sampling and adaptive scheduling model is constructed to extracts the component feature quantity of mass marketing data,and semantic feature extraction method is used to match and fuzzy detect the mass marketing data information.The fuzzy correlation degree information of mass marketing data component feature is calculated,and the automatic information clustering processing after mass marketing data mining is carried out by combining fuzzy C-means clustering method to improve the ability of extended query and parallel mining of mass marketing data.The development method of mining system based on WeChat platform is designed to realize the automatic scheduling and mining of marketing data in embedded bus.The simulation results show that the mining system can effectively mine mass marketing data,and the parallel scheduling ability of mining output is strong,and the system is stable and reliable.

关 键 词:微信 海量市场营销数据 挖掘 系统设计 模糊C均值聚类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象