航空激光增材制造零部件内部缺陷智能检测方法  被引量:3

Intelligent detection method for internal defects of parts in aeronautical laser manufacturing

在线阅读下载全文

作  者:赵慧凯 ZHAO Huikai(Xi'an Aeronautical University,Shanxi Xi'an 710077,China)

机构地区:[1]西安航空学院

出  处:《自动化与仪器仪表》2019年第7期133-136,共4页Automation & Instrumentation

基  金:省科技厅项目(含省自然科学基金项目);数控刀具自动视觉测量仪研究(No.2017GY-059)

摘  要:运用传统方法对航空激光增材制造零部件内部缺陷进行检测时,存在检测误差大、准确性低和效率不高的问题,为解决以上问题,提出了基于超声波的激光增材制造零部件内部缺陷智能检测方法。选取缺陷检测仪器与检测方式,并对仪器进行校准与调整;在此基础上采集超声波能量信号,对其进行转化从而得到原始波形数据。采用小波变换方法对采集到的信号进行小波去噪处理;根据信号去噪结果,运用主分量分析法对航空激光增材制造零部件内部缺陷特征频率进行提取;在特征提取的前提下通过脉冲反射法对缺陷进行分析,最终而实现对缺陷位置的准确定位。分析实验结果可知,与传统方法相比,本文方法的检测准确性为97%,明显高于传统方法,并且本文方法的检测时间较短,说明该方法具有较高检测效率和准确度,能够实现对缺陷的准确检测。In order to solve the problems of large error,low accuracy and inefficiency when using traditional methods to detect the internal defects of aeronautical laser parts,an intelligent detection method of internal defects of aeronautical laser parts based on ultrasound is proposed.Defect detection instrument and detection method are selected,and the instrument is calibrated and adjusted.On this basis,the ultrasonic energy signal is collected and transformed to get the original waveform data.According to the results of signal denoising,the principal component analysis method is used to extract the characteristic frequency of internal defects of aeronautical laser parts.On the premise of feature extraction,the defect is analyzed by pulse reflection method,and finally the position of the defect is located accurately.The experimental results show that,compared with the traditional method,the detection accuracy of this method is 97%.It is significantly higher than that of the traditional method,and the detection time of this method is shorter,which shows that this method has higher detection efficiency and accuracy,and it can achieve the accurate detection of defects.

关 键 词:激光增材制造技术 零部件 内部缺陷 检测方法 

分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象