检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨秋翔[1] 王冠男 王婷 YANG Qiu-xiang;WANG Guan-nan;WANG Ting(School of Software,North University of China,Taiyuan 030051,China)
机构地区:[1]中北大学软件学院
出 处:《电子设计工程》2019年第15期66-70,75,共6页Electronic Design Engineering
摘 要:为解决在挖掘频繁项集时由忽略项目间重要性差异以及最小支持度频繁变动而导致的挖掘效率低以及利用率低。通过关系矩阵解决数据体量大造成的挖掘效率低的问题;通过加权规则解决不同业务项目间重要性差异问题;通过动态树解决最小支持度变动频繁的问题。本文创新性提出加权矩阵动态树算法WMDT。实验结果表明,WMDT算法较以往算法,精准度和挖掘效率有显著提高同时受最小支持度变动影响较小,是一个高效的频繁项集挖掘算法。In order to solve the problem of mining frequent itemsets,the mining efficiency is low and the utilization rate is low,which is caused by ignoring the importance difference between items and the frequent change of minimum support. The problem of low mining efficiency caused by large volume of data is solved by relation matrix,the problem of importance difference between different business items is solved by weighting rules,and the problem of frequent change of minimum support degree is solved by dynamic tree. This paper proposes a weighted matrix dynamic tree algorithm WMDT. Experimental results show that WMDT algorithm is an efficient frequent itemsets mining algorithm,which can significantly improve the accuracy and mining efficiency compared with previous algorithms,and is less affected by the change of minimum support.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28