检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康文博 赵静雅 吕雪峰 陈勇 韩雪琳 田曙光 陈芳艳 苏雪婷 王洪源[1] 韩黎 KANG Wen-bo;ZHAO Jing-ya;LV Xue -feng;CHEN Yong;HAN Xue -lin;TIAN Shu-guang;CHEN Fang-yan;SU Xue -ting;WANG Hong-yuan;HAN Li(School of Public Health,Peking University,Beijing 100191,China;Center for Healthcare -associated Infection Surveillance and Control,Chinese PLA Center for Disease Control and Prevention,Beijing 100071,China;Information Center of the Logistics Support Department of the Central Military Commission,Beijing 100842,China)
机构地区:[1]北京大学公共卫生学院,北京100191 [2]中国人民解放军疾病预防控制中心医院感染监控中心,北京100071 [3]中央军委后勤保障部信息中心,北京100842
出 处:《中国感染控制杂志》2019年第7期619-624,共6页Chinese Journal of Infection Control
基 金:国家科技重大专项(2018ZX10733402;2018ZX10713003)
摘 要:目的建立住院患者医院下呼吸道感染预测模型,构建新的、简单的风险评分方法。方法以2014年多家医院感染调查数据为训练集,建立住院患者医院下呼吸道感染的Lasso-logistic回归预测模型,选择贝叶斯信息准则(BIC)最小模型为最终模型,将回归系数放大相同倍数建立评分方法,以2015、2016年调查数据为验证集,并与文献建立的风险评分方法进行比较。结果Lasso过程共进行360步,第24步时BIC最小(6690.4),正则化参数λ=130.8。风险评分方法包含17个条目,数量是文献风险评分方法的1/4,DeLong's检验显示,两评分方法验证集受试者工作特征曲线下面积(AUC)差异无统计学意义(Z=0.371,P=0.710),决策曲线几乎重合,净重新分类指数为-0.0149,差异无统计学意义(Z=-1.301,P=0.193),整体鉴别指数为0.006,改善差异有统计学意义(P=0.014)。结论利用Lasso-logistic回归模型建立了住院患者医院下呼吸道感染风险简单评分方法,该方法的条目相对简洁,预测效果准确。Objective To develop a predictive model for healthcare -associated lower respiratory tract infection(HA-LRTI) in hospitalized patients,and establish a simple risk scoring method. Methods Survey data of healthcare -associated infection(HAI)in a few hospitals in 2014 was as training dataset,a Lasso-logistic regression model for predicting HA-LRTI in hospitalized patients was established,minimum model of Bayesian information criterion (BIC) was chosen as the final model,scoring method was established by magnifying regression coefficient by the same scale,survey data of 2015 and 2016 were used as the validation dataset,and was compared with risk scoring method established in the literatures. Results Among the 360 steps of Lasso,smallest BIC (6 690.4) occurred at step 24 with regularization parameter λ=130.8.The risk scoring method consisted 17 items,which was 1/4 of the amount of literature risk scoring method,DeLong's test showed that there was no significant difference in area under the curve of receiver operating characteristic between two scoring methods ( Z=0.371,P =0.710),decision curve analysis almost overlaid,the net reclassification index was -0.0149,with no significant difference ( Z=-1.301,P =0.193),the integrated discrimination index was 0.006,and difference was significant ( P =0.014). Conclusion Lasso-logistic regression model established a simple scoring method of HA-LRTI risk for inpatients,the items of the method is relatively concise and the predictive effect is accurate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157