检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Le HE Zhenhan TU 何乐;涂振汉(School of Mathematics and Statistics, Wuhan University)
机构地区:[1]School of Mathematics and Statistics, Wuhan University
出 处:《Acta Mathematica Scientia》2019年第4期915-926,共12页数学物理学报(B辑英文版)
基 金:The project supported in part by the National Natural Science Foundation of China(11671306)
摘 要:Let B2,p:= {z ∈ C2: |z1|2+ |z2|p< 1}(0 < p < 1). Then, B2,p(0 < p < 1) is a non-convex complex ellipsoid in C2 without smooth boundary. In this article, we establish a boundary Schwarz lemma at z0 ∈ ?B2,p for holomorphic self-mappings of the non-convex complex ellipsoid B2,p, where z0 is any smooth boundary point of B2,p.Let B2,p :={z∈C2 :|z1|^2 +|z2|^p < 1}(0 < p < 1). Then, B2,p (0 < p < 1) is a non-convex complex ellipsoid in C2 without smooth boundary. In this article, we establish a boundary Schwarz lemma at z0 ∈B2,p for holomorphic self-mappings of the non-convex complex ellipsoid £2?, where zq is any smooth boundary point of B2,p.
关 键 词:BOUNDARY SCHWARZ lemma HOLOMORPHIC mappings Kobayashi metric NONCONVEX COMPLEX ELLIPSOIDS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.58