DISJOINT SUPERCYCLIC WEIGHTED PSEUDO-SHIFTS ON BANACH SEQUENCE SPACES  

DISJOINT SUPERCYCLIC WEIGHTED PSEUDO-SHIFTS ON BANACH SEQUENCE SPACES

在线阅读下载全文

作  者:Ya WANG Yu-Xia LIANG 王亚;梁玉霞(Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, China;School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China)

机构地区:[1]Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, China [2]School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China

出  处:《Acta Mathematica Scientia》2019年第4期1089-1102,共14页数学物理学报(B辑英文版)

基  金:supported by the Research Project of Tianjin Municipal Education Commission(2017KJ124)

摘  要:In this article, we present several equivalent conditions ensuring the disjoint supercyclicity of finite weighted pseudo-shifts acting on an arbitrary Banach sequence space.The disjoint supercyclic properties of weighted translations on locally compact discrete groups,the direct sums of finite classical weighted backward shifts, and the bilateral backward operator weighted shifts can be viewed as special cases of our main results. Furthermore, we exhibit an interesting fact that any finite bilateral weighted backward shifts on the space ?~2(Z) never satisfy the d-Supercyclicity Criterion by a simple proof.In this article, we present several equivalent conditions ensuring the disjoint supercyclicity of finite weighted pseudo-shifts acting on an arbitrary Banach sequence space. The disjoint supercyclic properties of weighted translations on locally compact discrete groups, the di rec t sums of finite classical weighted backward shifts, and the bilateral backward opera tor weighted shifts can be viewed as special cases of our main results. Furthermore, we exhibit an interesting fact that any finite bilateral weighted backward shifts on the space l^2 (Z) never satisfy the d-Supercyclicity Criterion by a simple proof.

关 键 词:DISJOINT supercyclicity WEIGHTED pseudo-shifts DISJOINT Blow-up/collapse Property 

分 类 号:O[理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象