检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邬志罡 荆一楠[1,2] 何震瀛[1,2] 王晓阳[1,2,3] Wu Zhigang;Jing Yi’nan;He Zhenying;Wang Xiaoyang(School of Computer Science,Fudan University,Shanghai 201203,China;Shanghai Key Laboratory of Data Science,Fudan University,Shanghai 200433,China;Shanghai Institute of Intelligent Electronics and Systems,Shanghai 200433,China)
机构地区:[1]复旦大学计算机科学技术学院,上海201203 [2]上海市数据科学重点实验室(复旦大学),上海200433 [3]上海智能电子与系统研究院,上海200433
出 处:《计算机应用与软件》2019年第8期196-202,共7页Computer Applications and Software
基 金:国家自然科学基金项目(61732004);国家重点研发计划项目(2018YFB1004404);上海科技创新行动计划项目(16DZ11002001)
摘 要:在数据探索性分析场景下,用户倾向于借助抽样系统获取近似查询结果来换取更快的查询速度。现有的抽样系统通常假设用户的历史查询记录能很好地表征未来的查询情况,从而针对特定的查询特征生成特定的抽样策略。然而,在现实场景中,用户探索意图变化丰富,用户查询特征的稳定性假设通常无法得到保证。为解决上述问题,提出一种评估任意用户查询与样本间匹配度的方法。离线训练生成多份样本集,并在应对具体查询时自动选取最匹配样本集进行近似结果计算。离线样本集的生成是以在所有可能的用户查询上的预期匹配度损失总和最小作为训练目标。实验结果表明,在真实数据集上,该抽样系统与现有方法相比,将近似结果的精确度提高了26.3%。During the data exploration tasks,users usually prefer to use sampling system for getting an approximate answer rather than suffer from high query latency.Existing sampling systems usually make hypothesis that the historical user query workload can represent the pattern of future user queries very closely.Based on this hypothesis,they specifically design sampling strategy for specific user query pattern.However,in the real use case,the users exploration intentions are always changing,so the hypothesis of the stability of the user query pattern cannot be guaranteed.To solve these problems,this paper proposed a method to evaluate the matching degree between any user query and the sample set.The system generated multiple offline sample sets.When a particular user query came,the system could automatically choose the best matching sample set and calculate the approximate query answer.The offline sample sets were trained so that the expected total sum of the matching degree losses upon all possible user queries became the lowest.The experimental results show that,compared with the existing methods,the accuracy of the approximate results is improved by 26.3% on the real data set.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3