面向云数据中心的虚拟机部署与迁移优化机制  被引量:6

Virtual machine placement and migration optimization mechanism in cloud data center

在线阅读下载全文

作  者:张磊 王莉 ZHANG Lei;WANG Li(Department of Software and Communication,Tianjin Sino-German University of Applied Sciences,Tianjin 300350,China)

机构地区:[1]天津中德应用技术大学软件与通信学院

出  处:《计算机工程与设计》2019年第8期2216-2223,共8页Computer Engineering and Design

基  金:国家重点研发计划基金项目(2017YFC0804301);天津市教委科研计划基金项目(2017KJ040);天津市企业科技特派员基金项目(18JCTPJC49700、18JTPC50000)

摘  要:传统虚拟机部署侧重降低主机能耗,忽略了全局能效。针对这一问题,提出一种自适应多重阈值的虚拟机部署与迁移优化算法。基于主机CPU利用率的历史数据集,设计两种基于K-均值聚簇的自适应多重阈值决策方法,依据多重阈值对主机进行分类;为对重载主机进行虚拟机迁移,设计3种虚拟机迁移选择方法,以能效最高的方式对迁移虚拟机进行重新部署。通过实际负载数据对算法进行仿真测试,测试结果表明,该算法可以有效降低能耗,SLA违例也较低,具有更高的能效。Traditional virtual machines placement methods focus on reducing energy consumption on hosts without considering the overall energy-efficiency improvement.Aiming at this problem,a virtual machine placement and migration optimization algorithm based on adaptive multi-threshold was presented.Based on the historical data set of CPU utilization on hosts,two adaptive multi-thresholds decision methods based on K-means clustering were designed.According to the multi-threshold,all hosts were divided.For migrating some virtual machines from heavy hosts,three virtual machines migration selection methods were designed and the migrated virtual machines with highest energy-efficiency idea were re-allocated.Some extensive comparison experiments were performed using real-world workload.The results show that,the proposed algorithm can reduce the energy cons- umption while maintaining low SLA violation,which has higher energy-efficiency.

关 键 词:云数据中心 虚拟机部署 虚拟机迁移 能效优化 服务等级协议 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象