检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何耀耀[1,2] 秦杨 杨善林[1,2] HE Yaoyao;QIN Yang;YANG Shanlin(School of Management,Hefei University of Technology,Hefei 230009,China;The Ministry of Education KeyLaboratory of Process Optimization and Intelligent Decision-making,Hefei 230009,China)
机构地区:[1]合肥工业大学管理学院,合肥230009 [2]过程优化与智能决策教育部重点实验室,合肥230009
出 处:《系统工程理论与实践》2019年第7期1845-1854,共10页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(71771073,71401049);流域水循环模拟与调控国家重点实验室开放基金课题(IWHR-SKL-201605)~~
摘 要:中期电力负荷预测过程中往往会受到多种外界因素(诸如温度、节假日、风力大小等)的不确定性干扰,并且影响中期电力负荷预测的因素复杂多变、规律各异,难以精准地进行预测.在大数据环境下,如何在种类繁多、数量庞大的影响因素中快速获取有价值信息成为了电力负荷预测问题的关键所在.提出的基于LASSO分位数回归概率密度预测方法,首先从影响电力负荷预测的多种外界因素中挑选出重要的影响因子,建立LASSO分位数回归模型.然后,使用triangular核函数,将LASSO分位数回归与核密度估计方法相结合,进行中期电力负荷概率密度预测.以中国东部某副省级市的历史负荷和外界影响因素(包括温度、节假日及风力大小)为算例,运用LASSO分位数回归方法进行中期电力负荷概率密度预测,得到的平均绝对误差在中位数和众数上分别为3.53%和3.69%,优于未考虑外界因素和考虑外界因素未进行变量选择的情况.为了进一步验证该方法的优越性,将其与非线性分位数回归和基于三角核的分位数回归神经网络概率密度预测方法进行对比分析,说明该方法能较好解决电力负荷预测中的高维数据问题,从而获得比较准确的电力负荷预测结果.The medium-term power load forecasting is often disturbed by a variety of external factors(such as temperature,holidays and wind power)and uncertainties.Also,the factors affecting the medium-term power load forecasting are complex and changeable,and it is dfficult to predict accurately.In the big data environment,how to obtain valuable information quickly in a variety of large number of influence factors has become the key to the power load forecasting problems.A method of density forecasting based on LASSO quantile regression was proposed in this paper.First,the important influence factors were selected from the various external factors affecting the power load forecasting,and the LASSO quantile regression model was established.Then,by using the triangular kernel function,LASSO quantile regression was combined with the method of kernel density estimation for the medium-term power load probability density forecasting.Taking the historical load and external influence factors(including temperature,holidays and wind power)of a sub-provincial city in eastern China as an example,the probability density prediction of medium-term power load was carried out.The average absolute error obtained was respectively 3.53%and 3.69%in the median and the mode,which was better than the results without considering the external factors and without variable selection.In order to further verify the superiority of the method,the method was compared with the nonlinear quantile regression(NLQR)and the quantile regression neural network based on triangle kernel(QRNNT)probability density forecasting methods.The results illustrate that this method can better solve the high-dimensional data problem in power load forecasting,and obtain more accurate results of power load forecasting.
关 键 词:LASSO分位数回归 概率密度预测 中期负荷 高维数据分析 电力
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249