Spatial-temporal variability of the fluctuation of soil temperature in the Babao River Basin, Northwest China  被引量:6

八宝河流域土壤温度波动的时空分异

在线阅读下载全文

作  者:NING Lixin CHENG Changxiu SHEN Shi 宁立新;程昌秀;沈石(State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University,Beijing 100875,China;Key Laboratory of Environmental Change and Natural Disaster,Beijing Normal University,Beijing 100875,China;Center for Geodata and Analysis,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China)

机构地区:[1]State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University,Beijing 100875,China [2]Key Laboratory of Environmental Change and Natural Disaster,Beijing Normal University,Beijing 100875,China [3]Center for Geodata and Analysis,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China

出  处:《Journal of Geographical Sciences》2019年第9期1475-1490,共16页地理学报(英文版)

基  金:National Key R&D Program of China,No.2017YFB0504102;National Natural Science Foundation of China,No.41771537

摘  要:The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sustainable development of society and environment in the Heihe River Basin.Soil temperature(ST) is a critical soil variable that could affect a series of physical,chemical and biological soil processes,which is the guarantee of water conservation and vegetation growth in this region.To measure the temporal variation and spatial pattern of ST fluctuation in the Babao River Basin,fluctuation of ST at various depths were analyzed with ST data at depths of 4,10 and 20 cm using classical statistical methods and permutation entropy.The study results show the following: 1) There are variations of ST at different depths,although ST followed an obvious seasonal law.ST at shallower depths is higher than at deeper depths in summer,and vice versa in winter.The difference of ST between different depths is close to zero when ST is near 5℃ in March or –5℃ in September.2) In spring,ST at the shallower depths becomes higher than at deeper depths as soon as ST is above –5℃;this is reversed in autumn when ST is below 5℃.ST at a soil depth of 4 cm is the first to change,followed by ST at 10 and 20 cm,and the time that ST reaches the same level is delayed for 10–15 days.In chilling and warming seasons,September and February are,respectively,the months when ST at various depths are similar.3) The average PE values of ST for 17 sites at 4 cm are 0.765 in spring > 0.764 in summer > 0.735 in autumn > 0.723 in winter,which implies the complicated degree of fluctuations of ST.4) For the variation of ST at different depths,it appears that Max,Ranges,Average and the Standard Deviation of ST decrease by depth increments in soil.Surface soil is more complicated because ST fluctuation at shallower depths is more pronounced and random.The average PE value of ST for 17sites are 0.863 at a depth of 4 cm > 0.818 at 10 cm > 0.744 at 20The Babao River Basin is the "water tower" of the Heihe River Basin. The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sustainable development of society and environment in the Heihe River Basin. Soil temperature(ST) is a critical soil variable that could affect a series of physical, chemical and biological soil processes, which is the guarantee of water conservation and vegetation growth in this region. To measure the temporal variation and spatial pattern of ST fluctuation in the Babao River Basin, fluctuation of ST at various depths were analyzed with ST data at depths of 4, 10 and 20 cm using classical statistical methods and permutation entropy. The study results show the following: 1) There are variations of ST at different depths, although ST followed an obvious seasonal law. ST at shallower depths is higher than at deeper depths in summer, and vice versa in winter. The difference of ST between different depths is close to zero when ST is near 5℃ in March or –5℃ in September. 2) In spring, ST at the shallower depths becomes higher than at deeper depths as soon as ST is above –5℃; this is reversed in autumn when ST is below 5℃. ST at a soil depth of 4 cm is the first to change, followed by ST at 10 and 20 cm, and the time that ST reaches the same level is delayed for 10–15 days. In chilling and warming seasons, September and February are, respectively, the months when ST at various depths are similar. 3) The average PE values of ST for 17 sites at 4 cm are 0.765 in spring > 0.764 in summer > 0.735 in autumn > 0.723 in winter, which implies the complicated degree of fluctuations of ST. 4) For the variation of ST at different depths, it appears that Max, Ranges, Average and the Standard Deviation of ST decrease by depth increments in soil. Surface soil is more complicated because ST fluctuation at shallower depths is more pronounced and random. The average PE value of ST for 17sites are 0.863 at a depth of 4 cm

关 键 词:soil temperature spatial-temporal fluctuation classical statistical methods permutation entropy Babao River Basin 

分 类 号:S152.8[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象