Iterative list decoding approach for Reed-Solomon codes  

Iterative list decoding approach for Reed-Solomon codes

在线阅读下载全文

作  者:Zhang Zhijun Niu Kai Dong Chao 

机构地区:[1]Key Laboratory of Universal Wireless Communications,Beijing University of Posts and Telecommunications

出  处:《The Journal of China Universities of Posts and Telecommunications》2019年第3期8-14,24,共8页中国邮电高校学报(英文版)

基  金:supported by the National Natural Science Foundation of China (61671080,61601047)

摘  要:A novel adaptively iterative list decoding(ILD) approach using for Reed-Solomon(RS) codes was investigated. The proposed scheme is exploited to reduce the complexity of RS Chase algorithm(CA) via an iterative decoding attempt mode. In each decoding attempt process, a test pattern is generated by flipping the bits of the least reliable positions(LRPs) within the received hard-decision(HD) vector. The ILD algorithm continues until a test pattern is successfully decoded by the underlying Berlekamp-Massey algorithm(BMA) of RS codes. Flipping within the same bits, the ILD algorithm provides the same test pattern set as the conventional RS CA, thus there is no degradation in error-rate performance. Without decoding all test patterns, the ILD algorithm can simplify the decoding complexity by its early termination. Simulation results show that the average complexity of the ILD algorithm is much lower than that of the conventional RS CA(and is similar to that of BMA decoding) at high signal-to-noise ratio(SNR) region with no less to the RS CA decoding error-rate performance.A novel adaptively iterative list decoding(ILD) approach using for Reed-Solomon(RS) codes was investigated. The proposed scheme is exploited to reduce the complexity of RS Chase algorithm(CA) via an iterative decoding attempt mode. In each decoding attempt process, a test pattern is generated by flipping the bits of the least reliable positions(LRPs) within the received hard-decision(HD) vector. The ILD algorithm continues until a test pattern is successfully decoded by the underlying Berlekamp-Massey algorithm(BMA) of RS codes. Flipping within the same bits, the ILD algorithm provides the same test pattern set as the conventional RS CA, thus there is no degradation in error-rate performance. Without decoding all test patterns, the ILD algorithm can simplify the decoding complexity by its early termination. Simulation results show that the average complexity of the ILD algorithm is much lower than that of the conventional RS CA(and is similar to that of BMA decoding) at high signal-to-noise ratio(SNR) region with no less to the RS CA decoding error-rate performance.

关 键 词:ITERATIVE DECODING soft-decision DECODING REED-SOLOMON CODES LOW-COMPLEXITY DECODING 

分 类 号:TN[电子电信]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象