Cryptanalysis on ‘an arbitrated quantum signature protocol based on the chained CNOT operations encryption’  

Cryptanalysis on ‘an arbitrated quantum signature protocol based on the chained CNOT operations encryption’

在线阅读下载全文

作  者:Wen Kai Zheng Shihui Sun Bin 

机构地区:[1]School of Cyberspace Security,Beijing University of Posts and Telecommunications

出  处:《The Journal of China Universities of Posts and Telecommunications》2019年第3期73-80,共8页中国邮电高校学报(英文版)

基  金:supported by the National Natural Science Foundation of China (61502048);the National Science and Technology Major Project (2017YFB0803001)

摘  要:Arbitrated quantum signature(AQS) is an important branch in quantum cryptography to authenticate quantum information, and cryptanalysis on AQS protocols helps to evaluate and improve security of AQS. Recently, it is discovered that an AQS protocol based on chained controlled-NOT(CNOT) algorithm is vulnerable to a novel attack because a transformation from binary keys into permutations and the chained CNOT algorithm have special properties, which enables a malicious receiver to forge signatures with probability 1/2. Moreover, a malicious signer can also deny his signatures with probability 1/4. Then, two possible improved methods are presented to resist these attacks: one is padding constants to reduce probability of the successful attacks, and the other is a circular chained CNOT algorithm to make the attack strategy invalid. And the security analysis shows that both the two improve methods could well resist these attacks.Arbitrated quantum signature(AQS) is an important branch in quantum cryptography to authenticate quantum information, and cryptanalysis on AQS protocols helps to evaluate and improve security of AQS. Recently, it is discovered that an AQS protocol based on chained controlled-NOT(CNOT) algorithm is vulnerable to a novel attack because a transformation from binary keys into permutations and the chained CNOT algorithm have special properties, which enables a malicious receiver to forge signatures with probability 1/2. Moreover, a malicious signer can also deny his signatures with probability 1/4. Then, two possible improved methods are presented to resist these attacks: one is padding constants to reduce probability of the successful attacks, and the other is a circular chained CNOT algorithm to make the attack strategy invalid. And the security analysis shows that both the two improve methods could well resist these attacks.

关 键 词:arbitrated QUANTUM SIGNATURE chained CNOT FORGERY disavowal 

分 类 号:TN[电子电信]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象