基于Python的超市O2O营销数据分析  被引量:2

Analysis of marketing data of supermarket O2O based on Python

在线阅读下载全文

作  者:赵雅欣 宁士勇[1] ZHAO Ya-xin;NING Shi-yong(School of Computer and Information Engineering,Harbin University of Commerce,Harbin 150028,China)

机构地区:[1]哈尔滨商业大学计算机与信息工程学院

出  处:《哈尔滨商业大学学报(自然科学版)》2019年第4期431-435,共5页Journal of Harbin University of Commerce:Natural Sciences Edition

摘  要:数据挖掘是分析数据的关键技术,利用Python语言及其IDE工具——PyCharm可以有效地对超市O2O(Online to Offline)营销产生的大量数据进行统计分析,从而加速线上线下资源整合,有利于超市的发展.通过对河南某大型连锁超市O2O营销产生的数据集进行去除无关属性、空数据、无效数据等预处理操作后,利用Python的第三方库Numpy、Pandas、Matplotlib等对预处理后的总数据集进行分析,得到了该数据集在年龄、用户等级、用户注册时间等不同维度上的分布情况.其中会员表所包含的用户中,大部分为年轻用户,小孩和老年人较少;另外,结合用户等级与他们的注册时长可以得出,大体上用户注册时间越长,等级就越高.超市决策人员可以根据统计分析的结果,调整营销策略,更好地服务客户、赢得客户.Data mining is the key technology for analyzing data,using Python language and its IDE tool PyCharm can effectively analyze the large amount of data generated by supermarket O2O(Online to Offline)marketing,thus accelerating the integration of online and offline resources,which is beneficial to the development of supermarket.This paper used Python’s third-party libraries Numpy,Pandas,Matplotlib to analyze the pre-processed total dataset through removing irrelevant attributes,null data,and invalid data from the dataset generated by O2O marketing in a large supermarket chain in Henan,the distribution of the dataset in different dimensions such as age,user level,and user registration time was obtained.Among them,most of the users included in the membership table were young users,children and the elderly were less;in addition,combined with the user level and their registration duration,it can be concluded that the longer the user registration time,the higher the level.Supermarket decision-makers can adjust marketing strategies based on the results of statistical analysis to better serve customers and win customers.

关 键 词:O2O营销 PYTHON 数据分析 超市 Numpy库 Pandas库 Matplotlib库 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象