开路傅里叶变换红外光谱层析重建算法仿真  被引量:5

Simulation of Tomographic Reconstruction Algorithms for Open-Path Fourier Transform Infrared Spectroscopy

在线阅读下载全文

作  者:邓矗岭 童晶晶 高闽光 李相贤 李妍 韩昕 刘文清[1] Deng Chuling;Tong Jingjing;Gao Minguang;Li Xiangxian;Li Yan;Han Xin;Liu Wenqing(Key Laboratory of Environmental Optics and Technology,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei,Anhui 230031,China;University of Science a7id Technology of Chiyia,Hefei,Anhui 230026,China)

机构地区:[1]中国科学院安徽光学精密机械研究所环境光学与技术重点实验室,安徽合肥230031 [2]中国科学技术大学,安徽合肥230026

出  处:《光学学报》2019年第7期33-40,共8页Acta Optica Sinica

基  金:国家自然科学基金(41775158);国家重点研发计划(2017YFC0209900,2018YFC0214100)

摘  要:采用代数迭代(ART)算法和最大似然期望最大化(MLEM)算法,利用开路傅里叶变换红外(OP-FTIR)光谱仪的测量结果,通过仿真模拟了高斯空间分布模型下的气体二维浓度场重建,并利用重建评价指标--逼近度和相关系数,分析了这两种重建算法的重建精度和抗噪性能。结果表明:在单峰气体浓度场中,ART与MLEM算法重建结果的逼近度分别为0.177和0.044;在双峰气体浓度场中,ART与MLEM算法重建结果的逼近度分别为0.263和0.069;MLEM算法更适用于重建复杂的气体浓度场。在不同噪声水平下,ART的抗噪性能优于MLEM算法,MLEM算法对噪声更敏感。Based on spectra measured by the open-path Fourier transform infrared(OP-FTIR) spectroscopy technology, the two-dimensional concentration distribution of the gas in a Gaussian spatial distribution model was reconstructed using the algebraic reconstruction technique(ART) and the maximum-likelihood expectation-maximization(MLEM) algorithms. Two evaluation indexes, the nearness and the correlation coefficient, were used to analyze the reconstructive accuracy and anti-noise performance of the reconstruction algorithms. In the single-peak concentration field of the gas, the nearness of the ART and MLEM results were 0.177 and 0.044, respectively, while they were 0.263 and 0.069, respectively, in the double-peak concentration field. The results therefore indicate that MLEM is more suitable for complex concentration distributions. Conversely, at different noise levels, the anti-noise performance of ART is better than that of MLEM, which is more sensitive to noise.

关 键 词:傅里叶光学 开路傅里叶变换红外光谱 层析成像 代数迭代算法 最大似然期望最大化算法 

分 类 号:O433[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象