检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘海峰 薛超[1] 梁星亮 LIU Haifeng;XUE Chao;LIANG Xingliang(School of Arts and Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China;College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China)
机构地区:[1]陕西科技大学文理学院,西安710021 [2]陕西科技大学电气与信息工程学院,西安710021
出 处:《计算机工程与应用》2019年第17期107-111,130,共6页Computer Engineering and Applications
基 金:陕西省自然科学基础研究计划青年项目(No.2017JQ1026);陕西省教育厅专项科学研究计划项目(No.17JK0102)
摘 要:针对基于一元Lagrange插值多项式的门限方案中存在的安全性不足及应用领域受限问题,通过研究现有的门限方案和实数域上的二元Lagrange插值理论,在有限域的基础上,提出一种基于二元Lagrange插值多项式的门限方案。给出了方案的构造及其数值算例,证明了方案的合理性和可行性。将该方案与基于一元Lagrange插值多项式的门限方案进行对比分析,表明新的方案中子秘密丢失所造成的损失更低、合谋难度更大,方案的安全性更高。同时,该方案可以拓宽门限方案的应用领域。Aiming at the problems of the insufficient security and the limited application areas in the threshold scheme based on univariate Lagrange interpolation polynomial, by studying existing threshold schemes and the bivariate Lagrange interpolation theory in the real field, on the basis of finite fields, a threshold scheme based on bivariate Lagrange interpolation polynomial is proposed. The structure and the numerical example of the scheme are given, which proves the rationality and feasibility of the scheme. Finally, the scheme is compared with the threshold scheme based on univariate Lagrange interpolation polynomial. The analysis shows that the loss caused by the loss of sub-secrets is lower, the difficulty of collusion is bigger in the new scheme, so the security of the scheme is higher. At the same time, this scheme can expand the application area of threshold schemes.
关 键 词:有限域 二元Lagrange插值多项式 秘密共享 门限方案 矩形网点
分 类 号:TP309.2[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.147.142