Bone marrow-derived mesenchymal stem cell transplantation attenuates overexpression of inflammatory mediators in rat brain after cardiopulmonary resuscitation  被引量:6

Bone marrow-derived mesenchymal stem cell transplantation attenuates overexpression of inflammatory mediators in rat brain after cardiopulmonary resuscitation

在线阅读下载全文

作  者:Qing-Ming Lin Xia-Hong Tang Shi-Rong Lin Ben-Dun Chen Feng Chen 

机构地区:[1]Institute of Fujian Emergency Medicine,Clinical College of Fujian Medical University,Fuzhou,Fujian Province,China [2]Department of Emergency,Fujian Provincial Hospital,Fujian Provincial Emergency Center,Fuzhou,Fujian Province,China

出  处:《Neural Regeneration Research》2020年第2期324-331,共8页中国神经再生研究(英文版)

基  金:supported by the Natural Science Foundation of Fujian Province of China,No.2015J01375(to QML);Fujian Provincial Hospital Foundation of China,No.2014070(to QML)

摘  要:Emerging evidence suggests that bone marrow-derived mesenchymal stem cell transplantation improves neurological function after cardiac arrest and cardiopulmonary resuscitation;however, the precise mechanisms remain unclear. This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cell treatment on expression profiles of multiple cytokines in the brain after cardiac arrest and cardiopulmonary resuscitation. Cardiac arrest was induced in rats by asphyxia and cardiopulmonary resuscitation was initiated 6 minutes after cardiac arrest. One hour after successful cardiopulmonary resuscitation, rats were injected with either phosphate-buffered saline(control) or 1 × 10~6 bone marrow-derived mesenchymal stem cells via the tail vein. Serum S100 B levels were measured by enzyme-linked immunosorbent assay and neurological deficit scores were evaluated to assess brain damage at 3 days after cardiopulmonary resuscitation. Serum S100 B levels were remarkably decreased and neurological deficit scores were obviously improved in the mesenchymal stem cell group compared with the phosphate-buffered saline group. Brains were isolated from the rats and expression levels of 90 proteins were determined using a RayBio Rat Antibody Array, to investigate the cytokine profiles. Brain levels of the inflammatory mediators tumor necrosis factor-α, interferon-γ, macrophage inflammatory protein-1α, macrophage inflammatory protein-2, macrophage inflammatory protein-3α, macrophage-derived chemokine, and matrix metalloproteinase-2 were decreased ≥ 1.5-fold, while levels of the anti-inflammatory factor interleukin-10 were increased ≥ 1.5-fold in the mesenchymal stem cell group compared with the control group. Donor mesenchymal stem cells were detected by immunofluorescence to determine their distribution in the damaged brain, and were primarily observed in the cerebral cortex. These results indicate that bone marrow-derived mesenchymal stem cell transplantation attenuates brain damage induced by cardiac arrest and Emerging evidence suggests that bone marrow-derived mesenchymal stem cell transplantation improves neurological function after cardiac arrest and cardiopulmonary resuscitation; however, the precise mechanisms remain unclear. This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cell treatment on expression profiles of multiple cytokines in the brain after cardiac arrest and cardiopulmonary resuscitation. Cardiac arrest was induced in rats by asphyxia and cardiopulmonary resuscitation was initiated 6 minutes after cardiac arrest. One hour after successful cardiopulmonary resuscitation, rats were injected with either phosphate-buffered saline(control) or 1 × 10~6 bone marrow-derived mesenchymal stem cells via the tail vein. Serum S100 B levels were measured by enzyme-linked immunosorbent assay and neurological deficit scores were evaluated to assess brain damage at 3 days after cardiopulmonary resuscitation. Serum S100 B levels were remarkably decreased and neurological deficit scores were obviously improved in the mesenchymal stem cell group compared with the phosphate-buffered saline group. Brains were isolated from the rats and expression levels of 90 proteins were determined using a RayBio Rat Antibody Array, to investigate the cytokine profiles. Brain levels of the inflammatory mediators tumor necrosis factor-α, interferon-γ, macrophage inflammatory protein-1α, macrophage inflammatory protein-2, macrophage inflammatory protein-3α, macrophage-derived chemokine, and matrix metalloproteinase-2 were decreased ≥ 1.5-fold, while levels of the anti-inflammatory factor interleukin-10 were increased ≥ 1.5-fold in the mesenchymal stem cell group compared with the control group. Donor mesenchymal stem cells were detected by immunofluorescence to determine their distribution in the damaged brain, and were primarily observed in the cerebral cortex. These results indicate that bone marrow-derived mesenchymal stem cell transplantation attenuates brain damage induced by cardiac arrest and

关 键 词:antibody array ASPHYXIA brain damage cardiac ARREST CARDIOPULMONARY RESUSCITATION global cerebral ischemia inflammatory mediator mesenchymal stem cell NEUROLOGICAL deficit score S100B 

分 类 号:R459.9[医药卫生—治疗学] R363[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象