基于自适应阈值PLS的过程监测方法及应用  

Process Monitoring Method Based on Adaptive Threshold PLS and its Application

在线阅读下载全文

作  者:梁梦圆 周平 LIANG Meng-yuan;ZHOU Ping(State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang Liaoning 110819, China)

机构地区:[1]东北大学流程工业综合自动化国家重点实验室

出  处:《控制工程》2019年第8期1437-1443,共7页Control Engineering of China

基  金:国家自然科学基金项目(61290323,61473064,61333007);中央高校基本科研业务费项目(N160805001);辽宁省教育厅科技项目(L20150186)

摘  要:偏最小二乘法(Partial Least Squares, PLS)在工业过程监测等方面得到了广泛研究与应用。为提高基于PLS过程监测的监测效果,针对传统PLS方法采用固定阈值产生大量误报与漏报的问题,提出一种自适应阈值PLS的过程监测方法。该方法首先根据过程正常历史数据建立PLS监测模型,并根据统计量的指数加权移动平均值,计算相应的自适应阈值,用于过程监测。最后,采用田纳西-伊斯曼(TE)过程和大型高炉炼铁过程的仿真实验测试方法的性能,实验结果表明,相对于传统PLS方法,基于自适应阈值PLS的过程监测能够降低误报率,提高过程监测性能。Partial least squares(PLS) has been extensively researched and applied in industrial process monitoring. In order to improve the monitoring effect based on PLS process monitoring, aiming at the problem that the traditional PLS method uses a fixed threshold which generates a lot of false alarms and missed detections, an adaptive threshold PLS process monitoring method is proposed. Firstly, the PLS monitoring model is established according to the normal historical data of the process, and the corresponding adaptive threshold is calculated according to the exponentially weighted moving average of the statistics for the process monitoring. Finally, using the Tennessee Eastman(TE) process and large blast furnace iron-making process simulation experiment to test the performance of the method. The experimental results show that the process monitoring based on adaptive threshold PLS can reduce the false alarms rate and improve the process monitoring performance compared with the traditional PLS method.

关 键 词:偏最小二乘 过程监测 自适应阈值 田纳西-伊斯曼过程 高炉炼铁 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象