检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张贤坤[1] 刘渊博[1] 任静 张高祯 Zhang Xiankun;Liu Yuanbo;Ren Jing;Zhang Gaozhen(School of Computer Science & Information Engineering,Tianjin University of Science & Technology,Tianjin 300457,China)
出 处:《计算机应用研究》2019年第9期2631-2635,2660,共6页Application Research of Computers
基 金:国家自然科学基金资助项目(61702367);天津市教委科研计划资助项目(2017KJ033)
摘 要:经典的无监督聚类算法快速、简单且可以直接对大规模数据集进行划分,但是由于网络结构较为复杂,划分的准确度并不高。为此,提出一种基于主动学习的纠错式半监督社区发现算法ESCD(error correction semisupervised community detection algorithm),将传统的K-means算法进行分步计算,并且在聚类的过程中加入成对约束。根据先验信息保留正确的划分,纠正错误的划分来改变网络的连接关系,使网络具有更明显的块结构,当节点与聚类中心的距离不再变化时划分结束。实验结果表明,与现有的社区发现算法相比,ESCD算法具有更高的精度,且所需的监督信息远远小于其他半监督算法。The classical unsupervised clustering algorithm is fast, simple and suitable for mining large-scale datasets, and it can also directly divide communities. However, due to the complexity of communities, the classification accuracy of the algorithm is not ideal. Therefore, this paper proposed an error- correcting semi-supervised community detection algorithm (ESCD) based on active learning. It can calculate the traditional K-means algorithm step by step, and adding pairs of constraints in the clustering process. In order to preserve the correct partitioning according to the prior information, it corrected the wrong division to change the connection of the network. So that the network has a more obvious block structure in the process of changing the distance between nodes and cluster centers. The results of the experiment show that compared with the existing community discovery algorithms, the ESCD algorithm has higher accuracy with less supervisory information than other semi-supervised algorithms.
关 键 词:主动学习 纠错式半监督社区发现 K-MEANS算法 成对约束
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.77.203