时空特征分析结合随机密钥的压缩域数字视频水印嵌入和提取方法  被引量:7

Compression domain digital video watermark embedding and extraction based on space-time features and random key

在线阅读下载全文

作  者:邱一城 薛峰[1] 唐晶磊[2] Qiu Yicheng;Xue Feng;Tang Jinglei(College of Information & Business,Zhongyuan Institute of Technology,Zhengzhou 451191,China;School of Information Engineering,Northwest A & F University,Yangling Shaanxi 712100,China)

机构地区:[1]中原工学院信息商务学院,郑州451191 [2]西北农林科技大学信息工程学院,陕西杨凌712100

出  处:《计算机应用研究》2019年第9期2813-2817,共5页Application Research of Computers

基  金:国家自然科学基金面上项目(61472314)

摘  要:针对现有水印嵌入和提取算法对滤波、压缩和噪声条件较为敏感的问题,提出了一种鲁棒的基于时空特征的压缩域数字视频水印嵌入和提取方法。提出的框架由一个公共密钥和一个私有密钥组成,用于阻止自我共谋攻击。算法对视频进行时空分析,并从压缩视频的时空特征中提取公共密钥,在本质上具有鲁棒性。首先,利用一个随机密钥从事先选取的块集合中选取候选块,进而确保水印框架的安全;然后基于压缩视频的时空特征选取出适合嵌入水印的4×4子块;最后,利用非零量化系数嵌入水印位。该水印框架允许视频位速率有限增加,并且降低了计算的开销。实验结果显示,相比其他几种对比方法,该方法具有较强的鲁棒性和安全性。Aiming at the problems that the existing watermark embedding and extraction algorithms are sensitive to the filtering,compression and noise conditions,this paper proposed a robust digital-domain video watermark embedding and extraction method based on space-time features.The proposed framework consisted of a public key and a private key to prevent self-conspiracy attacks.The algorithm performed spatio-temporal analysis on the video and extracted the public key from the spatiotemporal feature of the compressed video,which was inherently robust.First,it used a random key to select a candidate block from a pre-selected block set to ensure the security of the watermark frame.Then it selected the 4×4 sub-block suitable for embedding watermark based on the spatio-temporal features of compressed video.Finally,it embedded the watermark bits using non-zero quantized coefficients.The watermarking framework allowed a limited increase in the video bit rate and reduced the computational overhead.The experimental results show that compared with the contrast method,the proposed method has strong robustness and safety.

关 键 词:数字水印 时空特征 鲁棒性 压缩视频 随机密钥 非零量化系数 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象