权重模糊粗糙集的分类规则挖掘算法  被引量:6

Classification Rule Mining Algorithm for Weighted Fuzzy Rough Sets

在线阅读下载全文

作  者:李抒音 刘洋[2] LI Shuyin;LIU Yang(School of Art and Design,Zhengzhou University of Aeronautics,Zhengzhou 450046,China;School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China)

机构地区:[1]郑州航空工业管理学院艺术设计学院,郑州450046 [2]郑州大学信息工程学院,郑州450001

出  处:《计算机工程》2019年第9期211-215,共5页Computer Engineering

基  金:国家自然科学基金(61303044,61572444)

摘  要:针对粗糙集分类规则挖掘算法LEM2剪枝条件过于严格的问题,提出一种权重模糊粗糙集的改进规则挖掘算法。在用例带权重的模糊粗糙集理论框架上分析面向混合数据的分类规则挖掘算法,引入粗糙集模型的近似覆盖参数作为挖掘算法的泛化度量参数,实现对规则集数量和规则形式复杂程度的调节。实验结果表明,与LEM2算法和DataSqueezer算法相比,该算法的平均精度和平均召回率更优,分别为81 %和80 %,且生成规则的平均长度最短。Aiming at the problem that the pruning condition of the rough set classification rule mining algorithm LEM2 is too strict,this paper proposes an improved rule mining algorithm for weighted fuzzy rough sets.In the framework of fuzzy rough set theory with weights of use cases,the mining method of classification rules for mixed data is discussed.The approximate covering parameters of rough set model are introduced as the generalization metric parameters of mining algorithm,which realizes the adjustment of the number of rule sets and the complexity of the rule form.Experimental results show that compared with LEM2 and DataSqueezer algorithms,the average precision and average recall of the proposed algorithm are better,reaching 81 % and 80 % respectively,and the average length of the generation rule is the shortest.

关 键 词:知识发现 分类 粗糙集理论 规则挖掘 权重学习 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象