检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林萍[1] 何坚强 邹志勇 陈永明[1] Lin Ping;He Jianqiang;Zou Zhiyong;Chen Yongming(School of Electrical Engineering,Yancheng Institute of Technology,Jiangsu 224051,China;College of Mechanical and Electrical Engineering,Sichuan Agricultural University,Ya′an,Sichuan 625014,China)
机构地区:[1]盐城工学院电气工程学院,江苏盐城224051 [2]四川农业大学机电学院,四川雅安625014
出 处:《光学学报》2019年第8期200-207,共8页Acta Optica Sinica
基 金:国家自然科学基金(31601227,31501221,61803325);江苏省自然科学基金(BK20161310,BK20140467,BK20181049);国家住建部科技项目(2016-K1-09);江苏省高校自然科学研究面上项目(18KJB510046);江苏省住建厅科技项目(2015ZD61)
摘 要:提出一种基于可见光谱图多模态词典特征低秩稀疏表示框架的大豆外观品质判别方法,以精确确定大豆品质等级。首先,提取大豆粒子可见光谱图像的多尺度空间梯度特征和色差分量(YCbCr)颜色空间特征;将上述提取的空间梯度特征和颜色空间特征看作视觉词汇,通过Kernel K-means聚类算法获取视觉词汇的核空间局部分布聚类中心,形成视觉词典;然后,使用低秩稀疏表示法耦合上述两种特征,用于消除高维异质模态词典描述符中冗余信息的影响;最后,在高维耦合空间中根据样本之间的度量对低秩稀疏耦合表示多模态词典特征进行分类。所提方法充分利用多模态多尺度空间梯度特征和YCbCr颜色空间特征来描述大豆粒子外观品质的语义特征归属。实验结果表明:建模集和预测集总的识别精度分别达92.7%和80.1%,所提方法的识别精度优于文献中提出的基于单一模态的视觉词典特征表示方法。A method for discriminating the appearance quality of soybeans based on the low-rank sparse(LRS)representation frame of multimodal lexicon features in the visible spectrogram is presented to accurately determine the soybean quality level.Firstly,multi-scale spatial gradient features and YCbCr color space features of the visible spectrogram of soybeans are extracted and regarded as visual vocabularies.The Kernel K-means clustering algorithm is used to form the local distribution cluster center of visual vocabularies in kernel space,thereby generating a vision lexicon.Secondly,the LRS representation method is used to couple the two type of features,thereby eliminating the effect of redundant information in high-dimensional heterogeneous modal dictionary descriptors.Finally,the LRS representation coupling multi-modal dictionary features are classified according to the metric between samples in the high-dimensional coupling space.The proposed method makes full use of multi-modal and multi-scale spatial gradient features and YCbCr color space features to describe the semantic feature attribution of appearance quality of soybeans.The experimental results show that the recognition accuracies of training set and prediction set are 92.7%and 80.1%respectively,and the discrimination accuracy of the proposed method is better than that of single-visual-mode based vision lexicon feature representation method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43