人工智能在骨质疏松症中的应用研究综述  被引量:5

Review on the Application of Artifcial Intelligence for Osteoporosis

在线阅读下载全文

作  者:尹梓名[1] 孙大运 胡晓晖[2] 孔祥勇[1] 黄正行[3] YIN Zi-ming;SUN Da-yun;HU Xiao-hui;KONG Xiang-yong;HUANG Zheng-xing(School of Meical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Department of Spinal Surgery,Shanghai Punan Hospital,Shanghai 200125,China;College of Biomedical Engineering and Instrument Science,Zhejiang University,Hangzhou 310007,China)

机构地区:[1]上海理工大学医疗器械与食品学院,上海200093 [2]上海市浦东新区浦南医院脊柱外科,上海200125 [3]浙江大学生物医学工程与仪器科学学院,杭州310007

出  处:《小型微型计算机系统》2019年第9期1839-1850,共12页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(81801797)资助

摘  要:骨质疏松症是一种发病率高、起病隐匿的疾病.若不及时发现,导致病情加重和死亡率增加,将给患者及家庭带来沉重的负担.人工智能技术可有助于骨质疏松症的早期发现,预测患者患病风险.首先综述了常用于骨质疏松领域的医学人工智能技术的基础理论和研究现状,然后从骨质疏松症的危险因素分析、风险预测、识别与诊断三方面入手,分析回顾了相关研究,以期为国内同行提供关于该领域研究的最新进展.同时指出目前人工智能技术在骨质疏松应用的制约因素和挑战,并提出未来展望,为国内开展相关研究提供参考.Osteoporosis is a disease with high incidence and hidden onset. Without timely detection may lead to aggravation of the disease and increased mortality,which will bring heavy burden to patients and their families. Artificial intelligence technology can help early detection of osteoporosis and predict the risk. Firstly,the basic theory and research status of medical artificial intelligence technology commonly used in the field of osteoporosis are summarized. Then,the related research about risk factors analysis,risk prediction,identification and diagnosis of osteoporosis is analyzed and reviewed in order to provide the latest research progress in this field. At the same time,it points out the constraints and challenges of the current application of artificial intelligence technology in osteoporosis,and puts forward the prospects for the future,so as to provide a reference for related research in China.

关 键 词:人工智能 骨质疏松 智能算法 综述 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象