机构地区:[1]Institute of Avian Research, Vogelwarte Helgoland
出 处:《Avian Research》2019年第3期305-318,共14页鸟类学研究(英文版)
基 金:funded by the Federal Agency for Nature Conservation under the Federal Ministry for the Environment,Nature Conservation and Nuclear Safety(FKZ 3510 860 1000);the Niedersachsische Wattenmeerstiftung(project 18/10)
摘 要:Background:While the general migration routes of most waders are known,details concerning connectivity between breeding grounds, stopover sites and wintering grounds are often lacking.Such information is critical from the conservation perspective and necessary for understanding the annual cycle.Studies are especially needed to identify key stopover sites in remote regions. Using satellite transmitters, we traced spring and autumn migration routes and connectivity of Grey Plovers on the East Atlantic Flyway.Our findings also revealed the timing,flight speed, and duration of migrations. Methods:We used ARGOS satellite transmitters to track migration routes of 11 Grey Plovers that were captured at the German Wadden Sea where they had stopped during migration.Birds were monitored for up to 3 years,2011-2014.Results:Monitoring signals indicated breeding grounds in the Taimyr and Yamal regions;important staging sites on the coasts of the southern Pechora Sea and the Kara Sea;and wintering areas that ranged from NW-Ireland to Guinea Bissau.The average distance traveled from wintering grounds to breeding grounds was 5534 km. Migration duration varied between 42 and 152 days;during this period birds spent about 95% of the time at staging sites.In spring most plovers crossed inland Eastern Europe, whereas in autumn most followed the coastline.Almost all of the birds departed during favorable wind conditions within just 4 days (27-30 May) on northward migration from the Wadden Sea.In spring birds migrated significantly faster between the Wadden Sea and the Arctic than on return migration in autumn (12 vs.37 days),with shorter stopovers during the northward passage.Conclusions:Our study shows that satellite tags can shed considerable light on migration strategies by revealing the use of different regions during the annual cycle and by providing detailed quantitative data on population connectivity and migration timing.Background: While the general migration routes of most waders are known, details concerning connectivity between breeding grounds, stopover sites and wintering grounds are often lacking. Such information is critical from the conservation perspective and necessary for understanding the annual cycle. Studies are especially needed to identify key stopover sites in remote regions. Using satellite transmitters, we traced spring and autumn migration routes and connectivity of Grey Plovers on the East Atlantic Flyway. Our findings also revealed the timing, flight speed, and duration of migrations.Methods: We used ARGOS satellite transmitters to track migration routes of 11 Grey Plovers that were captured at the German Wadden Sea where they had stopped during migration. Birds were monitored for up to 3 years, 2011-2014.Results: Monitoring signals indicated breeding grounds in the Taimyr and Yamal regions; important staging sites on the coasts of the southern Pechora Sea and the Kara Sea; and wintering areas that ranged from NW?Ireland to Guinea Bissau. The average distance traveled from wintering grounds to breeding grounds was 5534 km. Migration dura?tion varied between 42 and 152 days; during this period birds spent about 95% of the time at staging sites. In spring most plovers crossed inland Eastern Europe, whereas in autumn most followed the coastline. Almost all of the birds departed during favorable wind conditions within just 4 days(27-30 May) on northward migration from the Wadden Sea. In spring birds migrated significantly faster between the Wadden Sea and the Arctic than on return migration in autumn(12 vs. 37 days), with shorter stopovers during the northward passage.Conclusions: Our study shows that satellite tags can shed considerable light on migration strategies by revealing the use of different regions during the annual cycle and by providing detailed quantitative data on population connectiv?ity and migration timing.
关 键 词:Annual cycle Long-distance migration Migration speed Migration strategy Migration timing Satellite transmitters SHOREBIRDS Tracking STOPOVER
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...