检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕大刚[1,2] 刘洋 于晓辉[1,2] Lü Da-gang;LIU Yang;YU Xiao-hui(Key Lab of Structure Dynamic Behavior and Control of China Ministry of Education, Harbin Institute of Technology, Harbin 150090, China;Key Lab of Smart Prevention and Mitigation of Civil Engineering Disaster of the Ministry of Industry and Information Technology,Harbin Institute of Technology, Harbin 150090, China;College of Architecture & Environment, Sichuan University, Chengdu 610065, China)
机构地区:[1]哈尔滨工业大学结构工程灾变与控制教育部重点实验室,黑龙江哈尔滨150090 [2]哈尔滨工业大学土木工程智能防灾减灾工业与信息化部重点实验室,哈尔滨150090 [3]四川大学建筑与环境学院,成都610065
出 处:《工程力学》2019年第9期1-11,24,共12页Engineering Mechanics
基 金:国家自然科学基金项目(51678209,51378162,51778198);国家科技支撑计划课题项目(2013BAJ08B01)
摘 要:第二代基于性能地震工程理论中的地震易损性主要是指结构构件以及非结构构件的抗震能力,与传统地震风险理论中的地震易损性定义和内涵并不相同。为了澄清二者的不一致性,首先介绍传统地震风险理论中地震易损性的定义和概率模型,然后指出第二代基于性能地震工程理论存在五个层次的地震易损性模型:地震需求易损性模型、抗震能力易损性模型、地震损伤易损性模型、地震损失易损性模型和抗震决策易损性模型,指出了这五种模型的区别及其相互关系,推导得到了地震需求易损性模型和地震损伤易损性模型分布参数的解析表达式。在此基础上,根据不同的不确定性传递路径,提出了正向PBEE和逆向PBEE的概念,以通过不同方式求解第二代基于性能地震工程理论的风险积分公式。基于地震危险性函数的近似表达式以及地震易损性模型及其分布参数的解析表达式,通过正向PBEE和逆向PBEE方法,分别得到了具有相同表达形式的工程需求参数EDP、地震损伤DM和决策变量DV三个层次的概率地震风险表达式。通过该文的研究,将传统地震风险分析理论与第二代基于性能地震工程理论统一在一致的理论框架之中。The seismic fragility in 2 nd-generation performance-based earthquake engineering(PBEE) generally refers to the seismic capacities of both structural components and non-structural components. However, this concept is different from the definition and the content of seismic fragility in traditional seismic risk theory. To clarify the differences between the two fragility definitions, the definition and its probabilistic model for seismic fragility in traditional seismic risk theory are firstly introduced. And then, five seismic fragility models in2 nd-generation PBEE are identified: seismic demand fragility model, seismic capacity fragility model, seismic damage fragility model, seismic loss fragility model, and seismic decision fragility model. The differences and their relationships of the five seismic fragility models are pointed out. The analytical formulations for the probability models and their distribution parameters in a seismic demand fragility model and a seismic damage fragility model are derived. On the basis of the above theoretical deduce, the concepts of forward PBEE and backward PBEE are put forward according to the directions of uncertainty propagation. Through this new concept, the risk integration equation in 2 nd-generation PBEE can be solved by different methods. By integrating the approximate formulation of seismic hazard and the analytical formulations of fragility probability models and their distribution parameters, the three probabilistic seismic risk formulations with the same formats for EDP, DM and DV levels are obtained via the methods of forward PBEE and backward PBEE. Through the study of this paper, the traditional seismic risk theory and the 2 nd-generation PBEE are unified into a consistent theoretical framework.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.48